Economics 101A (Lecture 10)

Stefano DellaVigna

February 16, 2017

Outline

- 1. Application 2: Intertemporal choice
- 2. Application 3: Altruism and charitable donations

1 Intertemporal choice

- Nicholson Ch. 17, pp. 609-613
- So far, we assumed people live for one period only
- Now assume that people live for two periods:
 - t = 0 people are young
 - -t = 1 people are old
- t = 0: income M_0 , consumption c_0 at price $p_0 = 1$
- t = 1: income $M_1 > M_0$, consumption c_1 at price $p_1 = 1$
- Credit market available: can lend or borrow at interest rate \boldsymbol{r}

- Budget constraint in period 1?
- Sources of income:

-
$$M_1$$

- $(M_0 - c_0) * (1 + r)$ (this can be negative)

• Budget constraint:

$$c_1 \leq M_1 + (M_0 - c_0) * (1 + r)$$

or

$$c_0 + \frac{1}{1+r}c_1 \le M_0 + \frac{1}{1+r}M_1$$

- Utility function?
- Assume

$$u(c_0, c_1) = U(c_0) + \frac{1}{1+\delta}U(c_1)$$

- U' > 0, U'' < 0
- δ is the discount rate
- Higher δ means higher impatience

- Elicitation of δ through hypothetical questions
- Person is indifferent between 1 hour of TV today and $1+\delta$ hours of TV next period

Maximization problem:

$$\max U(c_0) + \frac{1}{1+\delta}U(c_1)$$

s.t. $c_0 + \frac{1}{1+r}c_1 \le M_0 + \frac{1}{1+r}M_1$

• Lagrangean

- First order conditions:
- Ratio of f.o.c.s:

$$\frac{U'(c_0)}{U'(c_1)} = \frac{1+r}{1+\delta}$$

• Case $r = \delta$

$$- c_0^* c_1^*?$$

– Substitute into budget constraint using $c_0^{\ast} = c_1^{\ast} = c^{\ast}$:

$$\frac{2+r}{1+r}c^* = \left[M_0 + \frac{1}{1+r}M_1\right]$$

or

$$c^* = \frac{1+r}{2+r}M_0 + \frac{1}{2+r}M_1$$

- We solved problem virtually without any assumption on U!
- Notice: $M_0 < c^* < M_1$

• Case $r > \delta$

$$- c_0^* c_1^*?$$

- Comparative statics with respect to income M_0
- Rewrite ratio of f.o.c.s as

$$U'(c_0) - \frac{1+r}{1+\delta}U'(c_1) = 0$$

• Substitute c_1 in using $c_1 = M_1 + (M_0 - c_0)(1 + r)$ to get

$$U'(c_0) - \frac{1+r}{1+\delta}U'(M_1 + (M_0 - c_0)(1+r)) = 0$$

• Apply implicit function theorem:

$$\frac{\partial c_0^*(r, \mathbf{M})}{\partial M_0} = -\frac{-\frac{1+r}{1+\delta}U''(c_1)(1+r)}{U''(c_0) - \frac{1+r}{1+\delta}U''(c_1)*(-(1+r))}$$

• Denominator is always negative

• Numerator is positive

 ∂c_0^{*}(r, M) /∂M₀ > 0 — consumption at time 0 is a normal good.

• Can also show $\partial c_0^*(r, \mathbf{M}) / \partial M_1 > 0$

- Comparative statics with respect to interest rate r
- Apply implicit function theorem:

$$\frac{\partial c_0^*(r, \mathbf{M})}{\partial r} = -\frac{-\frac{1}{1+\delta}U'(c_1)}{U''(c_0) - \frac{1+r}{1+\delta}U''(c_1)*(-(1+r))} -\frac{-\frac{1+r}{1+\delta}U''(c_1)*(M_0 - c_0)}{U''(c_0) - \frac{1+r}{1+\delta}U''(c_1)*(-(1+r))}$$

• Denominator is always negative

- Numerator: First term negative (substitution eff.)
- Numerator: Second term (income effect:)
 - positive if $M_0 > c_0$
 - negative if $M_0 < c_0$

2 Altruism and Charitable Donations

- Maximize utility = satisfy self-interest?
- No, not necessarily

- 2-person economy:
 - Mark has income M_M and consumes c_M
 - Wendy has income M_W and consumes c_W

• One good: c, with price p = 1

• Utility function: u(c), with u' > 0, u'' < 0

 Wendy is altruistic: she maximizes u(c_W)+αu (c_M) with α > 0

• Mark simply maximizes $u(c_M)$

• Wendy can give a donation of income D to Mark.

• Wendy computes the utility of Mark as a function of the donation D

• Mark maximizes

$$\max_{c_M} u(c_M)$$

s.t. $c_M \le M_M + D$

• Solution:
$$c_M^* = M_M + D$$

• Wendy maximizes

$$\max_{c_M,D} u(c_W) + \alpha u (M_M + D)$$

s.t. $c_W \le M_W - D$

• Rewrite as:

$$\max_{D} u(M_W - D) + \alpha u(M_M + D)$$

• First order condition:

$$-u'(M_W - D^*) + \alpha u'(M_M + D^*) = 0$$

• Second order conditions:

$$u''(M_W - D^*) + \alpha u''(M_M + D^*) < 0$$

- Assume $\alpha = 1$.
 - Solution?

$$- u'(M_W - D) = u'(M_M + D^*)$$

-
$$M_W - D^* = M_M + D^*$$
 or $D^* = (M_W - M_M)/2$

- Transfer money so as to equate incomes!
- Careful: $D<{\rm 0}~({\rm negative~donation!})$ if $M_M>M_W$
- Corrected maximization:

$$\max_{D} u(M_W - D) + \alpha u(M_M + D)$$

s.t.D \ge 0

• Solution (
$$\alpha = 1$$
):

$$D^* = \begin{cases} (M_W - M_M)/2 & \text{if } M_W - M_M > 0 \\ 0 & \text{otherwise} \end{cases}$$

- Assume interior solution. $(D^* > 0)$
- Comparative statics 1 (altruism):

$$\frac{\partial D^*}{\partial \alpha} = -\frac{u'\left(M_M + D^*\right)}{u''(M_W - D^*) + \alpha u''\left(M_M + D^*\right)} > 0$$

• Comparative statics 2 (income of donor):

$$\frac{\partial D^*}{\partial M_W} = -\frac{-u''(M_W + D^*)}{u''(M_W - D^*) + \alpha u''(M_M + D^*)} > 0$$

• Comparative statics 3 (income of recipient):

$$\frac{\partial D^*}{\partial M_M} = -\frac{\alpha u'' (M_M + D^*)}{u'' (M_W - D^*) + \alpha u'' (M_M + D^*)} < 0$$

- A quick look at the evidence
- From Andreoni (2002)

3 Next Lectures

- After the midterm...
- Introduction to Probability
- Risk Aversion
- Coefficient of risk aversion