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Abstract

In this paper, I extend current research on regression discontinuity
(RD) designs with multiple assignment variables. I discuss the assump-
tions underlying the validity of such RD designs, and introduce graphical
methods that check for violations of these assumptions. Instead of esti-
mating a scalar treatment effect as in RD designs with a single assignment
variable, I propose estimating treatment functions that are defined on the
boundaries that separate different treatment groups in the assignment
variable space. I generalize a local linear regression method currently
used for estimation of said treatment functions, and separately develop
a novel estimation method using thin plate regression splines. The per-
formances of these estimation methods are assessed through an extensive
simulation study based closely on real data.

1 Background

The regression discontinuity (RD) design, first introduced by Thistlewaite and
Campbell (1960), has enjoyed a revival in popularity over the past two decades.
As Lee and Lemieux (2010) document, the RD method has been used for a wide
range of policy evaluations, in areas such as education, labor market programs,
health and crime. In RD designs, treatment status is determined by whether an
assignment variable passes a threshold. Under the assumption that the location
of observations near this cutoff is as-good-as-random, the treatment effect is
identified as the difference in mean outcomes for observations just above and
below the cutoff.

In practice however, there are many instances where treatment is determined
by more than one assignment variable, such as when numerous criteria deter-
mine eligibility for a benefit, or when students need to achieve a minimum score
for each component of an exam in order to move onto the next grade level.
Multiple-assignment variable RD (MRD) designs estimate treatment effects for
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such instances by considering observations near the boundaries separating differ-
ent treatment groups in the multidimensional assignment variable space. MRDs
fall under two general categories – cases with dichotomous treatments (the two
treatment conditions being either treatment or control), and those with multiple
treatments (i.e., more than two mutually exclusive treatment conditions). For
the latter category, treatment effects are only defined for pairwise comparisons
of treatment conditions, so there is no natural “control” group. To avoid confu-
sion, I adopt the following taxonomy for different categories of RDs throughout
the rest of this paper:

Conventional RD: One assignment variable/Dichotomous treatment;

MDRD: Multiple assignment variables/Dichotomous treatment;

MMRD: Multiple assignment variables/Multiple mutually exclu-
sive treatment conditions.

The next example illustrates the difference between MDRD and MMRD.
Consider first an exam that has a math and reading component, both of

which students must pass in order to move onto the next grade level. There
are two assignment variables (math and reading test scores) and dichotomous
treatment (whether or not the student moves onto the next grade), making this
a MDRD. Next, consider a slightly modified scenario, in that students who only
fail one of the components are merely required to attend remedial classes. This
is now a MMRD with two assignment variables and multiple mutually exclusive
treatment conditions (grade retention, remedial classes, or moving onto the next
grade).

While various papers have used MRD for analysis, the estimands of inter-
est and estimation methods used are extremely varied. This is because, un-
like for conventional RD, there is scant literature on methods for MRD, the
following papers being rare exceptions. Wong, Steiner and Cook (2013) com-
pare four different estimation methods for MDRD. Papay, Willett and Murnane
(2011a) define MMRD, and propose a specific method of estimation. Reardon
and Robinson (2012) briefly discuss both types of MRD.

This paper extends the nascent literature on both categories of MRD in sev-
eral ways. First, I justify the estimation of treatment effect functions rather
than scalar treatment effects, and introduce key assumptions underlying the
validity of MRD. Then, I develop graphical analysis methods specifically tai-
lored for MRD. Such graphical presentations can enhance transparency of the
research design and check for violations of the identifying assumptions. Next, I
modify an existing estimation method to address its limitations, and separately
develop a novel estimation method for MRD using thin plate regression splines.
In an extensive simulation study, estimation via thin plate regression splines
outperforms other conventional estimation methods.

The rest of this paper is organized as follows. Section 2 briefly reviews con-
ventional RD, defines both types of MRD formally, and outlines the assumptions
that underpin these RD designs. Section 3 discusses graphical analysis meth-
ods for MRD. Section 4 describes a generalization of an existing estimation
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approach, and proposes a novel estimation method which uses thin plate re-
gression splines. Section 5 covers a simulation study modeled closely on data
from Kane (2003). Section 6 discusses additional issues such as fuzzy MRD and
section 7 concludes.

2 Regression Discontinuity Designs

This section covers the basics of conventional RD and MRD, introducing nota-
tion that will be used throughout this paper. Key assumptions underlying the
validity of these designs, as well as estimands of interest are stated.

2.1 Conventional RD

I begin this section by briefly reviewing the conventional RD design, since it
motivates most concepts in MRD. Given a sample of size N , I denote the treat-
ment indicator for observation i by Wi. A sharp RD design is assumed, so Wi

is completely determined by the value of a one-dimensional assignment variable
Xi, which I assume to be continuous for now. To simplify notation, I assume
without loss of generality that Xi has been centered about its cutoff, and that
the assignment rule is:

Wi ≡ I[Xi >= 0].

I write the potential outcomes as Yi(0) and Yi(1), where the observed out-
comes are Yi = Yi(0) for observations with Xi < 0, and Yi = Yi(1) for observa-
tions with Xi ≥ 0. The key identification assumption for the conventional RD
design is that the conditional expectation functions of potential outcomes are
continuous at the cutoff for the assignment variable Xi:

lim
x→0+

E[Yi(0)|Xi = x] = lim
x→0−

E[Yi(0)|Xi = x], and

lim
x→0+

E[Yi(1)|Xi = x] = lim
x→0−

E[Yi(1)|Xi = x].

A stronger assumption – that the conditional expectation functions are con-
tinuous over their domains of definition – is often used in practice, since it
is hard to imagine the weaker assumption being met but with discontinuities
occurring at non-cutoff points in a well-formulated problem.

Under this setup, the estimand of interest is

(1) τRD = lim
x→0+

E[Yi|Xi = x]− lim
x→0−

E[Yi|Xi = x].

2.2 MDRD

This subsection introduces RD designs with multiple assignment variables and
dichotomous treatment, which I abbreviate as MDRD throughout this paper.
For most of the paper, I focus on the case with d = 2 assignment variables for
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notational simplicity. However, most of the discussion can easily be generalized
to instances where d > 2. Again, I assume that the assignment variables have
been centered about their cutoffs and denote the assignment variables for ob-
servation i by X1i and X2i. Occasionally, I use the notation Xi to denote the
vector of assignment variables in a MRD design.

Retaining the notation for potential outcomes, I assume without loss of
generality that the assignment rule is of the “AND” type (i.e. in order to
qualify for treatment, the cutoffs for both assignment variables must be met)1:

Wi ≡ D1i ×D2i = I[X1i ≥ 0 and X2i ≥ 0], where

D1i ≡ I[X1i ≥ 0] and D2i ≡ I[X2i ≥ 0].

Here, in contrast to the conventional case where there is a single scalar
cutoff, there are two thresholds, one for each assignment variable. Moreover, the
assignment variable space in MRD is of dimension d = 2, so that the boundaries
separating different treatment groups have dimension d− 1 = 1. The treatment
frontiers are defined as:

F1 ≡ {(x1, x2)|x1 = 0 and x2 ≥ 0}, and

F2 ≡ {(x1, x2)|x1 ≥ 0 and x2 = 0}.

In order to estimate treatment effects using these frontiers, certain continuity
assumptions for the conditional expectation functions of the potential outcomes
are needed. The assumptions for Y (1) are that

lim
x1→0+

E[Yi(1)|X1i = x1, X2i = x2] =

lim
x1→0−

E[Yi(1)|X1i = x1, X2i = x2] for x2 ≥ 0,

lim
x2→0+

E[Yi(1)|X1i = x1, X2i = x2] =

lim
x2→0−

E[Yi(1)|X1i = x1, X2i = x2] for x1 ≥ 0,

and similarly for Y (0), as Wong et al. (2013) note. Once again, it may be rea-
sonable to assume that these conditional expectation functions are continuous

1As an example of why it suffices to consider “AND” assignment rule, consider the following
“OR” assignment rule:

Wi = I[X1i > 0 or X2i > 0].

In this case, I can simply redefine the treatment indicator and assignment variables by

W̃i ≡ 1−Wi, X̃1i ≡ −X1i, X̃2i ≡ −X2i.

This yields

W̃i = I[X1i ≤ 0 and X2i ≤ 0] = I[X̃1i ≥ 0 and X̃2i ≥ 0],

which is in the form of an “AND” assignment rule.
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over their domains of definitions, although this is a stronger assumption than
necessary.

Unlike in conventional RD, there is some ambiguity over the estimand of
interest in MRD. Let Gi = Yi(1)−Yi(0) be the difference in potential outcomes
for observation i, g(x1, x2) be the difference in expected potential outcomes as a
function of the assignment variables, and f(x1, x2) be the joint density function
for (X1, X2).

Wong et al. (2013) consider the two frontier-specific treatment effects and
the overall treatment effect to be the estimands of interest, and introduce a
“frontier approach” that estimates these three quantities. Using this paper’s
notation, the treatment effects specific to F1 and F2 are

(2) τWong
1 ≡ E[Gi|(X1i, X2i) ∈ F1] =

∫
x2≥0 g(0, x2)f(0, x2)dx2∫

x2≥0 f(0, x2)dx2
, and

(3) τWong
2 ≡ E[Gi|(X1i, X2i) ∈ F2] =

∫
x1≥0 g(x1, 0)f(x1, 0)dx1∫

x1≥0 f(x1, 0)dx1

respectively. The overall treatment effect

(4) τWong
MDRD ≡ E[Gi|((X1i, X2i) ∈ F1 ∪ F2)] = w1τ

Wong
1 + w2τ

Wong
2 ,

is a weighted average of the frontier-specific treatment effects, with the weights
respectively reflecting the probability of an observation being in each of the
frontiers (conditional on being on one of the frontiers):

(5) w1 ≡
∫
x2≥0 f(0, x2)dx2∫

x1≥0 f(x1, 0)dx1 +
∫
x2≥0 f(0, x2)dx2

, and

(6) w2 ≡
∫
x1≥0 f(x1, 0)dx1∫

x1≥0 f(x1, 0)dx1 +
∫
x2≥0 f(0, x2)dx2

.

However, there are several aspects to this approach that are undesirable.
First, as Wong et al. (2013) note, the estimated overall treatment effect

is not invariant to rescaling of the assignment variables. This problem is less
serious when the assignment variables are measured in comparable scales, for
instance when they represent scores on different components of a test, as in
Jacob and Lefgren (2004) and Matsudaira (2008). However, there are also cases
where the units of measurement for assignment variables are not aligned, such as
with parental income and high school GPA, which are the assignment variables
used in Kane (2003). There does not seem to be a natural scaling of GPA and
income that would make the units of measurement “comparable”, and the fact
that the overall treatment effect estimate depends on such an arbitrary scaling
decision diminishes the credibility of this estimate.

Second, potentially interesting heterogeneities in the treatment effect may be
lost in summarizing the effects as scalar quantities. For example, Kane (2003)
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investigates how financial aid affects the college going decision, where the as-
signment variables determining aid eligibility are high school GPA and parental
income. The treatment effect at the GPA threshold τWong

GPA is a weighted average
over students with different family incomes (below the income threshold). Yet,
one may suspect that at the GPA frontier, the treatment effect would be greater
for students with lower family income, since financial constraints are presumably
a greater barrier to college going for these students. It would not be possible
to test the validity of this conjecture using the scalar treatment effect estimates
proposed by Wong et al. (2013).

Finally, Wong et al. (2013) admit that their approach requires the strong
assumption that the response surface g(x1, x2) is correctly specified. Moreover,
estimation of the joint density f(x1, x2) and numerical integration requires large
amounts of data and is computationally expensive.

This paper proposes estimating treatment functions instead of scalar treat-
ment effects. Specifically, I estimate the functions

(7) τ1(x2) ≡ E[Yi(1)− Yi(0)|X1i = 0, X2i = x2],

(8) τ2(x1) ≡ E[Yi(1)− Yi(0)|X1i = x1, X2i = 0]

for x2 ≥ 0 and x1 ≥ 0 respectively. Assuming that the expectations of potential
outcomes conditional on the assignment variables are continuous, it follows that
τ1(x2) and τ2(x1) are continuous functions and that their values coincide at the
intersection of the treatment frontiers, i.e. τ1(0) = τ2(0).

This approach is both simpler and circumvents most shortcomings of the
“frontier approach” proposed by Wong et al. (2013). In particular, estimation
of treatment effect functions does not require density estimation or numerical
integration, and these functions capture variations in treatment effects over
different subpopulations near the treatment frontiers.

2.3 MMRD

With more than one assignment variable, it is not uncommon for there to be
multiple mutually exclusive treatments, as exemplified by the numerous exam-
ples given by Papay et al. (2011a). This necessitates additional notation, and
the assignment rule from MDRD needs to be modified for MMRD2.

2I assume here for simplicity of exposition, that there are four treatment conditions, with
both assignment variables centered at their cutoffs. Papay et al. (2011a) note that in general
with d assignment variables, there are 2d different treatments. In fact, there may be more
or less than 2d different treatments. An example with two assignment variables and three
treatments is given in the introduction – the treatments being (i) forced to stay back a grade
if both tests are failed; (ii) summer remedial classes if only one test is failed; (iii) moving onto
the next grade if both tests are passed. Cases with two assignment variables and more than
four possible treatments are also imaginable when there are multiple cutoffs.
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W3i = 1 W4i = 1

Figure 1: An illustration of the difference between MDRD (left panel) and
MMRD (right panel)

To simplify notation, I denote the four quadrants of the assignment variable
space by

R1 ≡ {(x1, x2)|x1 ≥ 0, x2 ≥ 0},
R2 ≡ {(x1, x2)|x1 < 0, x2 ≥ 0},
R3 ≡ {(x1, x2)|x1 < 0, x2 < 0},
R4 ≡ {(x1, x2)|x1 ≥ 0, x2 < 0}.

Indicators for the four treatments can thus written as

Treatment 1: W1i ≡ D1i ×D2i = I[Xi ∈ R1],

Treatment 2: W2i ≡ (1−D1i)×D2i = I[Xi ∈ R2],

Treatment 3: W3i ≡ (1−D1i)× (1−D2i) = I[Xi ∈ R3],

Treatment 4: W4i ≡ D1i × (1−D2i) = I[Xi ∈ R4].

Similarly, there are four different treatment frontiers which coincide with
the non-negative and negative x1- and x2-axes. A treatment effect function is
estimated along each of these frontiers. The frontier separating treatments 1
and 2 is

F12 ≡ {(x1, x2) x1 = 0 and x2 ≥ 0}
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and the treatment effect function (moving from treatment 1 to 2) is denoted

(9) τ12(x2) ≡ E[Yi(2)− Yi(1)|X1i = 0 and X2i = x2].

The other frontiers F23, F34 and F14, and treatment effect functions τ23(x1),
τ34(x2) and τ14(x1) are defined analogously. These treatment effect functions
represent the effect of moving from treatment condition 3 to 2, 3 to 4, and 4 to
1 respectively3.

Validity of the MMRD design once again relies on the conditional expecta-
tion of the potential outcomes obeying certain continuity conditions along the
treatment frontiers. For instance, denoting the four potential outcomes by Y (1),
Y (2), Y (3) and Y (4), estimation of τ12(x2) requires

lim
x1→0+

E[Yi(1)|X1i = x1, X2i = x2] = lim
x1→0−

E[Yi(1)|X1i = x1, X2i = x2],

lim
x1→0+

E[Yi(2)|X1i = x1, X2i = x2] = lim
x1→0−

E[Yi(2)|X1i = x1, X2i = x2],

for x2 ≥ 0. Analogous continuity assumptions are necessary for the estimation
of τ23(x1), τ34(x2) and τ14(x1).

As before, it is not unreasonable to ask that the conditional expectation func-
tions for the four potential outcomes be continuous over the entire assignment
variable space.

However, it is worth mentioning that in general for (i1, j1) 6= (i2, j2), the
equality τi1j1(0) = τi2j2(0) may not hold (unlike in MDRD)4, which is due to
there being more than two treatment functions under consideration. To explain
why this is reasonable, consider an example with math and reading test scores
as assignment variables determining four possible treatments – grade retention,
math remedial classes over summer, reading remedial classes over summer, and
moving onto the next grade level. It is clear in this case that there is no reason to
expect the treatment effect which compares grade retention and summer math
class, to be similar to the treatment effects comparing reading or math class to
no remedial, even for pairs of test scores that are relatively close in Euclidean
distance.

Another noteworthy issue is the fact that although there are
(
4
2

)
= 6 dif-

ferent pairs of treatment conditions that one may wish to compare, this paper
only focuses on comparing treatments that are separated by a one-dimensional
boundary in the assignment variable space (i.e. the non-negative or negative x1
or x2-axis). I omit comparisons of treatments 1 and 3, as well as 2 and 4, which
have treatment boundaries that contain only a single point – the origin. In
practice, this often implies that there is an insufficient number of observations
(near the boundary) to estimate these treatment effects precisely.

3Strictly speaking, there are two treatment effects that can be estimated along each frontier,
corresponding to a movement from one treatment to the other, and the movement in the
opposite direction. Since these two treatment effect estimates will simply be of opposite signs,
I only choose one treatment effect function to consider for each frontier.

4For a simple illustration of this, consider the case where the potential outcomes are deter-
ministic, so that Yi(k) = k for k ∈ {1, 2, 3, 4}. Under this setup, τ12(0) = −1 6= −3 = τ14(0).
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3 Graphical Analysis

Graphical analysis is critical in establishing the credibility of conventional RD
designs. Typically, one plots the outcome variable as a function of the assign-
ment variable, then examines the graph for the presence of a discontinuity at the
cutoff value of the assignment variable, which may be taken as visual evidence
of a nonzero treatment effect. The same is sometimes done for the treatment
indicator variable. Diagnostic plots are also useful for checking whether the iden-
tifying assumptions of the RD design are being violated. A common diagnostic
plot graphs predetermined characteristics as functions of the assignment vari-
able. Another frequently used diagnostic plot is a histogram of the assignment
variable. Graphical analysis methods for conventional RD are well-documented
in survey papers such as Imbens and Lemieux (2008) and Lee and Lemieux
(2010).

While relatively easy to implement for conventional RD, greater dimension-
ality in the MRD setting presents additional challenges. Most relevant among
these is the fact that the visual impact of plots in more than two dimensions is
greatly diminished. Perhaps due to this difficulty, there has been no discussion
on graphical analysis in the current MRD literature that I am aware of. In this
section, I review the common plots used in conventional RD and discusses how
they may be generalized appropriately for the MRD setting.

3.1 Discontinuity in Outcomes

The most common graph used in conventional RD plots the outcome variable as
a function of the assignment variable. This graph is designed to provide visual
evidence of a discontinuity in outcomes at the cutoff, which would suggest a non-
zero treatment effect. The procedure for conventional RD typically involves
partitioning the assignment variable space into disjoint bins (or intervals) of
constant width, computing the average outcomes within each bin, and plotting
these average outcomes against midpoints of the bins. Care must be taken
in defining the intervals so that the cutoff does not lie in the interior of any
interval; otherwise, this would result in a point that aggregates outcomes for
observations from both treatment conditions, making it hard to interpret. A
polynomial regression line is often fitted to points on each side of the cutoff to
improve the visual impact of the plot.

More formally, given a bandwidth h, one first constructs K intervals

[b0, b1), [b1, b2),..., [bK−1, bK),

s.t. 0 ∈ {b1, ..., bK−1},
bk − bk−1 = h for all k ∈ {1, ...,K},
min{xi} ∈ [b0, b1) and max{xi} ∈ [bK−1, bK).

9



Then, one calculates the average outcomes within each interval,

Ȳk ≡
1

|{i|xi ∈ [bk−1, bk)}|

N∑
i=1

Yi · I[xi ∈ [bk−1, bk)] for k ∈ {1, ...,K},

and plots Ȳk against
bk−1 + bk

2
.

Various approaches have been suggested for the choice of h. Lee and Lemieux
(2010) propose two – one based on cross-validation, and the other based on visual
inspection coupled with an F-test to determine whether h is small enough5. The
guiding principle behind these approaches is to choose h sufficiently small so
that the plot does not “over-smooth” the data, but large enough so that the bin
estimates are still reasonably precise.

Here, I consider how a similar type of graphical analysis might work in the
MRD setting with two assignment variables. I first describe several straight-
forward extensions of the procedure for conventional RD, which I argue are
either inappropriate or suboptimal. Then, I introduce the “slicing” and “sliding
window” approaches, which create plots that are better suited for MRD.

3.1.1 Straightforward Extensions of the Conventional RD Plot that
are Suboptimal

Perhaps the most straightforward extension of the procedure for conventional
RD is to create an analogous graph in three dimensions, using the two assign-
ment variables and the outcome variable. Since the assignment variable space
is two-dimensional, two widths need to be chosen (which I denote by h1 and
h2 for X1 and X2 respectively)6. One would then construct P one-dimensional
intervals for X1 and separately, Q intervals for X2, using the same procedure as
for conventional RD. This yields PQ two-dimensional intervals (or bins) which
I denote by

Ip,q ≡ {(x1, x2)|b1,p−1 ≤ x1 < b1,p and b2,q−1 ≤ x2 < b2,q}.

For non-empty intervals, average outcomes within each bin are computed as
before using the formula

Ȳp,q ≡
1

|{i|(x1i, x2i) ∈ Ip,q|

N∑
i=1

Yi · I[(x1i, x2i) ∈ Ip,q],

5Specifically, they consider the regression with K bin dummies (indicating whether an
observation is in a given bin) for bins of width h, as well as an alternative specification with
2K bin dummies for bins of width h/2. Since the first model is nested within the second, an
F-test can be used to compare the models. A rejection of the null hypothesis would suggest
that the choice of h is too large and that the data is being “over-smoothed”.

6One may be able to get away with choosing a single bin width h for both assignment
variables if the scales are comparable, e.g. scores for different components of a test. However,
I focus on the more general case, since there are many instances where this does not apply,
such as when the assignment variables are GPA and income.
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and plotted over the centers of the bins,

(
b1,p−1 + b1,p

2
,
b2,q−1 + b2,q

2

)
in a

three-dimensional graph, possibly with a smoothing surface fitted to each treat-
ment region.

The main problem with this graph is that the height (which represents the
value of the outcome variable) in three dimensional graphs tends to be distorted.
In particular, perceptions about the sizes of discontinuities tend to depend on
the “viewpoint” chosen for the plot. It will be especially challenging to choose a
“viewpoint” that accurately portrays the discontinuities along all four frontiers
in a MMRD. Hence, it may be more appropriate instead to summarize this
information using two-dimensional graphs.

For MDRD, an easy way to create a single plot illustrating the disconti-
nuity near the boundary makes use of the “centering” approach of Wong et
al. (2013)7. The motivating idea is that instead of considering the two assign-
ment variables separately, one focuses instead on the distance of an observation
from the boundary separating the two treatments. Assuming that the scales
of the two centered assignment variables are comparable (otherwise, one may
standardize the variables to have equal variance), one creates a new variable

Zi ≡ inf{d(Xi,X)|X ∈ F1 ∪ F2},

where d denotes a distance function of the user’s choice8. Now, the variable Zi
is used as the new assignment variable for graphical purposes, so the approach
for conventional RD can be used.

A similar method may be employed for MMRD, although the two “adjacent”
treatments that are being compared need to be specified. This yields four plots
in total (one for each pair of treatments being compared). For instance, to
compare treatments 1 and 2 (which are separated in the assignment variable
space by F12) graphically, one would compute

Zi ≡ inf{d(Xi,X)|X ∈ F12} for i s.t. Xi ∈ R1 ∪R2

and create the conventional RD plot described earlier, using only the subset of
observations receiving either treatments 1 or 2.

However, this “centering” approach has a major limitation in the dichoto-
mous treatment case, in that it does not show frontier-specific treatment effects.
By using a single assignment variable Zi instead of the two original assignment
variables, individuals close to the frontier F1 are treated essentially the same as
those close to the F2. This is especially undesirable when the original assign-
ment variables are qualitatively different, so that frontier-specific effects are of

7Although Wong et al. (2013) originally described this as a method for estimation, the
graphical method I describe here is motivated by the same ideas.

8Wong et al. (2013) use the distance function induced by the L∞-norm, although one may
prefer distance functions induced by other norms such as L2 (Euclidean) or L1 depending on
the context.
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interest (e.g. whether children around the income threshold respond to financial
aid differently from children around GPA threshold)9.

A simple method for MDRD that seems to address this shortcoming is to
plot two graphs using the procedure for conventional RD. Specifically, for the
first graph, one takes the graphical approach for conventional RD, treating the
first assignment variable as if it were the only assignment variable (and likewise
for the second graph using the second assignment variable).

At first glance, this method seems to capture frontier-specific effects (or

more precisely, estimates of τWong
1 and τWong

2 ). However, I argue that this
approach yields misleading graphical estimates. To elaborate, consider the plot
with X1 on the horizontal axis, which should display approximately the average
discontinuity along F1, i.e. τWong

1 . An outcome Y0+ for a point at (or just
above) the cutoff of zero on this graph should represent an average of the points
near F1 that receive the treatment, i.e.

Y0+ ≈ E[Yi|Xi ∈ F1] ≈
∫ ∞
0

∫ ε

0

y · f(x1, x2)dx1dx2

for some small ε > 0. However, the actual quantity represented by Y0+ is

Y0+ ≈ E[Yi|X1i = 0] ≈
∫ ∞
−∞

∫ ε

0

y · f(x1, x2)dx1dx2.

The problem is that this method does not take into account the value of the
other assignment variable X2, and so the expectation is taken over the entire
x2-axis rather than over F1 (the non-negative x2-axis). As a result, observations
with X2i < 0 (which are ineligible for treatment and may be far from F1) are
involved in the computation of Y0+, which is supposed to represent the average
outcomes for individuals just qualifying for treatment (along the F1 frontier).
Hence, graphs produced by this approach are essentially uninterpretable.

This problem can be fixed with a simple modification – when plotting the
graph using X1 as the assignment variable, instead of using all the data, one
only uses observations with X2 ≥ 0 (and vice versa when constructing the graph
for X2). This approach is similar in spirit to the “univariate” estimation method
discussed in Wong et al. (2013). For MMRD, there is no difference between
this method and the “centering” approach described earlier.

Nonetheless, it is possible to do better, since the estimands of interest in
this paper are the treatment functions τ1(x2) and τ2(x1), rather than the scalar

treatment effects τWong
1 and τWong

2 . The remainder of this subsection presents
two graphical methods that are more appropriate for displaying non-constant
treatment effects – the “slicing” and “sliding window” plots.

9This drawback is also the main reason this paper does not generally recommend using the
“centering” approach for estimation despite the method’s simplicity.
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3.1.2 “Slicing” and “Sliding Window” Plots

The following method, which this paper calls the “slicing” approach, represents
an extension of the “univariate” approach that enables an approximate visual
representation of the treatment effect functions10. Here, I focus on the dichoto-
mous treatment case and describe the procedure for producing graphs associated
with τ1(x2). The procedures for τ2(x1), as well as for MMRD are completely
analogous.

One considers only the subset of observations {(Yi,Xi)|X2i ≥ 0}, and par-
titions (or “slices”) this data into disjoint subsets (or “slices”)

Sk ≡ {(Yi,Xi)|X2i ∈ [sk−1, sk)}

for k = 1, ...,K, where 0 = s0 < s1 < ... < sK−1 < sK <∞.
Next, for each of these partitions Sk, one treats X1 as the assignment vari-

able in a conventional RD design and creates a two-dimensional plot using a
suitable bandwidth. This results in a series of K “slicing” plots, one corre-
sponding to each interval of (non-negative) X2. An estimate of the treatment
effect corresponding to each subset Sk of observations can be obtained using
the polynomial regressions that are fit to points on each side of the cutoff. This
yields a crude point estimate of τ1(x2) at a number of values for x2.

The “slicing” method allows one to examine discontinuities in the outcome
variable at the cutoff for one assignment variable (say X1) for different sub-
sets of observations (grouped based on values of the other assignment variable,
X2). These plots also contain some information on whether the size of these
discontinuities vary with X2 (i.e. whether the treatment effect function τ1(x2)
is constant). However, there are typically only a limited number of these plots
to compare since disjoint subsets of observations are used to create each plot,
so the visual evidence on whether τ1(x2) is constant is still rather scant. Hence,
I next describe the “sliding window” plot, which essentially summarizes a series
of “slicing” plots to provide a better visual summary of the treatment effect
function over its domain of definition.

For concreteness, I once again focus on τ1(x2) in my description of the “slid-
ing window” plot (as before, the procedures for creating the plot for τ2(x1),
as well as for MMRD are completely analogous). This graph summarizes the
discontinuities occurring at the cutoff for X1 over different intervals of X2. One
of the main differences in the calculations required to construct this plot versus
the “slicing” plots, is that instead of partitioning the data into disjoint subsets
according to values of X2, one creates subsets of data by “sliding” the interval
of X2 under consideration (hence the name of the graph). In particular, the
intervals of X2 used for different subsets are no longer disjoint.

There are a few parameters in the “sliding window” plot that the user may
choose to provide the best visual impact – w (the width of intervals for X2),

10In fact, one may think of the “univariate” approach as a special case of the “slicing”
approach with K = 1, using the notation introduced below.
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c (the constant that the interval for X2 is shifted by each time) and h (the
bandwidth for X1, controlling the amount of data just above and below the
cutoff of X1 to use). The following subsets of {(Yi,Xi)|X2i ≥ 0} are created:

Wk ≡ {(Yi,Xi)|X2i ∈ [(k − 1)c, (k − 1)c+ w)}

for k = 1, ...,K ′, where

K ′ ≡ inf{k ∈ Z|(k − 1)c+ w > max{X2i)}.

For each Wk, let W l
k and Wu

k be the subsets of observations in Wk below
and above the cutoff for X1 that are within h of this cutoff respectively. One
then computes the average values of the outcome variable Y for the subsets W l

k

and Wu
k , which I denote by Ȳ lk and Ȳ uk respectively.

The final step in creating the “sliding window” graph is to plot Ȳ lk and Ȳ uk ,
against the midpoints of X2 in Wk, which are given by

Xmid
2,k =

2(k − 1)c+ w

2
.

The vertical distance between Ȳ uk and Ȳ lk is an approximation of τ1(Xmid
2,k ).

The procedure just described for τ1(x2) uses a rectangular kernel of width
w for X2 in the calculation of Ȳ lk and Ȳ uk . However, one may reasonably argue
against this uniform weighting of points within Wk by insisting that observa-
tions with values of X2 closer to Xmid

2,k should have a greater impact in the

determination of Ȳ lk and Ȳ uk . The method for constructing “sliding window”
plots I described can easily be modified to accommodate other choices of ker-
nels with compact support, e.g. triangular or Epanechnikov. In particular, the
only change required is to use weighted averages for Ȳ lk and Ȳ uk . The formulae
are

Ȳ lk =
1∑N

i=1 w
l
i,k

N∑
i=1

wli,kYi and Ȳ uk =
1∑N

i=1 w
u
i,k

N∑
i=1

wui,kYi,

where wli,k and wui,k represent the (relative) weights for observation i, which

depends on the sets W l
k and Wu

k respectively, as well as on the choice of kernel.
In particular, for the three kernels mentioned above, the (relative) weights may
be written as11

Rectangular: wli,k = I[(Yi,Xi) ∈W l
k]

wui,k = I[(Yi,Xi) ∈Wu
k ];

Triangular: wli,k =

(
w

2
− |X2 −Xmid

2,k |
)
· I[(Yi,Xi) ∈W l

k]

wui,k =

(
w

2
− |X2 −Xmid

2,k |
)
· I[(Yi,Xi) ∈Wu

k ];

11In the formulae I give for the (relative) weights, I omit the constant of integration since
my formulae for Ȳ l

k and Ȳ u
k include the sum of the weights in their denominators.
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Epanechnikov: wli,k =

[
w

4

2
− (X2 −Xmid

2,k )2
]
· I[(Yi,Xi) ∈W l

k]

wui,k =

[
w

4

2
− (X2 −Xmid

2,k )2
]
· I[(Yi,Xi) ∈Wu

k ].

To summarize, in this subsection I described various plots that one may think
are suitable for displaying the discontinuities in outcome for MRD. I discussed
why several of these plots are unsuitable, and recommended the “slicing” and
“sliding window” plots. The “slicing” plots allow one to separately examine the
discontinuities in outcome for different regions along each treatment frontier.
The “sliding window” plot provides additional visual evidence on whether these
discontinuities are constant along each treatment frontier. Examples of both
these two plots based on a realistic simulated dataset are presented in section 5
of this paper.

3.2 Diagnostic Plots

The crucial assumption underpinning validity of conventional RD and MRD de-
signs requires that the conditional expectation functions of potential outcomes
be continuous at the cutoffs. Unfortunately, this assumption cannot be tested
directly, since potential outcomes for any particular treatment are only observed
on one side of the threshold (assuming that the RD or MRD is sharp). Nonethe-
less, two types of diagnostic plots are often used in conventional RD to test this
assumption indirectly. This subsection briefly reviews the diagnostic plots for
conventional RD, and describes how they can be adapted for use in MRD.

3.2.1 Plotting a Predetermined Outcome as a Function of the As-
signment Variables

The first type of diagnostic graph often used in conventional RD plots a prede-
termined outcome against the assignment variable. For example, if the outcome
is college going and scholarship eligibility is determined by whether one’s SAT
math score passes a certain threshold, the diagnostic graph may plot a prede-
termined outcome such as the mother’s education level or the student’s high
school GPA against the student’s SAT math score. The motivation is that if
the values of observations’ assignment variables near the cutoff are genuinely
as-good-as-random, then the baseline characteristics of observations just below
or above the threshold should not differ systematically.

The discussion in the preceding subsection for plotting outcomes against
assignment variables in MRD apply to this diagnostic plot as well. This paper
proposes using the “slicing” approach to create these diagnostic plots, with
the predetermined variable (instead of the outcome variable of interest) on the
vertical axis.
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3.2.2 Examining the Density of the Assignment Variables

The second type of diagnostic plot common in conventional RD is a histogram
of the assignment variable (where no bin contains the cutoff in its interior).
The rectangles immediately to the left and right of the threshold are examined
to get a sense of whether the density of the assignment variable is continuous
at the cutoff. An obvious discontinuity would indicate that the locations of
observations’ assignment variable values near the threshold are not as-good-as-
random (or in other words, that the assignment variable is manipulable), which
calls into question the validity of the RD design.

As an example, suppose that admission to the most prestigious university in
a (fictional) country depended on whether the applicant’s admission test score
passed a certain threshold. The goal is to determine the “value-added” of at-
tending this university, using future earnings as the outcome variable. Suppose
(rather pessimistically) also that corruption is rampant in this country, and par-
ents of rich kids anywhere near the threshold are able to bribe officials grading
the test into giving their kids a score above the cutoff. In such a case, only kids
in relatively poor families will have test scores that fall just under the cutoff,
so that the characteristics of applicants just above and below the cutoff are dif-
ferent on average. Hence, the treatment effect estimate may be biased upwards
if rich kids tend to have higher earnings on average independent of ability, due
to better connections and so forth. The validity of the RD design is clearly
violated, and this will show up in the histogram in the form of the rectangle
immediately to the right of the cutoff being significantly higher than the one to
its left.

While the concept of examining the density of assignment variables at the
treatment frontiers in MRD follows straightforwardly from the motivation for
the histogram in conventional RD, implementation is much trickier. A three-
dimensional histogram encounters the difficulty of the height (which approxi-
mately represents the joint density of the assignment variables) being distorted,
a problem mentioned in the previous section for graphs showing discontinuities
in outcome. This paper suggests two alternatives for displaying the assignment
variables’ density in MRD with minimal distortion.

The first approach is to display the three-dimensional histogram as a contour
plot. The reader can then examine whether the colors of bins on either side of
each frontier change drastically (which would indicate a likely discontinuity).
The main challenge in creating an informative contour plot is the selection of
a suitable color gradient, which is arguably much simpler than the problem of
choosing an appropriate “viewpoint” for a three-dimensional histogram.

The second approach is similar in spirit to the “slicing” approach described
earlier in this section, with frequency on the vertical axis. The following is a
more detailed description of this procedure. Suppose that I intervals are used for
X1, and J intervals for X2, so that there is a total of at most IJ bins. For each
of the I intervals for X1, one can create a two-dimensional histogram with the J
intervals for X2 on the horizontal axis, and rectangle heights that represent the
number of observations with X1 and X2 values within the respective intervals.
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The same can be done for each unique interval of X2. For a MDRD design, not
all of these I+J two-dimensional histograms are relevant, since only histograms
that contain bins for observations receiving different treatments are relevant12.

Regardless of whether one chooses to use the contour plot or a series of
“slicing” histograms to examine the density of the assignment variables, care
must be taken in defining the bins so that no point on the treatment frontiers
falls in the interior of any bin.

3.2.3 Demonstration of Diagnostic Plots using NCHS Dataset

This example demonstrates the recommended diagnostic plots described in the
previous subsection for a MMRD, with neonate birthweights and gestation ages
as the assignment variables. Neonates with birthweights or gestation ages below
the cutoffs of 1500g and 37 weeks are respectively classified as “very low birth
weight” and “premature”, and tend to receive extra medical attention as a re-
sult. The design for this example is motivated by Almond et al. (2010), who
use a conventional RD design with birthweight as the only assignment variable.
Almond et al. do not use gestation age as an assignment variable due to worries
that it is manipulable. The purpose of this graphical exercise is to determine
whether the inclusion of gestation age as a second assignment variable (in ad-
dition to birthweight) violates the assumptions underpinning the validity of the
MMRD design13. The dataset used for these plots is the 2008 Cohort Linked

12One may notice that this “slicing” approach is designed only to detect discontinuities in
the density as the frontier is approached from a direction parallel to one of the treatment
frontiers in the assignment variable space. Hence, it is possible that a discontinuity at some
point of the frontier may exist that would not be detectable by this method, as illustrated by
the following example.

Suppose that a discontinuity existed at a point (0, x∗2) along the frontier that is the positive
x2-axis, where x∗2 > 0. Further assume that

lim
x1→0+

f(x1, x
∗
2) = lim

x1→0−
f(x1, x

∗
2),

but that

lim
t1→0+

f(−t1, x∗2 + t1) 6= lim
t2→0+

f(t2, x
∗
2 + t2),

where f(x1, x2) is the joint density function of the assignment variables. This would represent
a discontinuity in the joint density function that is not detectable by the “slicing” approach,
which can only test whether the limits limx1→0+ f(x1, x∗2) and limx1→0− f(x1, x∗2) are equal.

Nonetheless, while it is easy to construct counterexamples in theory, it is difficult to imagine
manipulation of the assignment variables in practice that would result in such discontinuities
in practice. For instance, if teachers were manipulating reading and math test scores, they
would have to do so in a way that for each given reading test score, the proportion of students
with math test scores just above and below the threshold remained roughly the same, and
vice versa, switching the roles of reading and math. It is hard to think of why agents might
be motivated to engage in such contrived manipulation.

13One may realize that although I had been assuming so far that the assignment variables
have continuous support, the measurement of gestation age in weeks is rather coarse, so that
the support of the gestation age variable “is more discrete than continuous”. Assignment
variables that have discrete rather than continuous support present issues for treatment effect
estimation, as Lee and Card (2008) point out. I revisit this issue in greater detail when
discussing estimation for MRD in the next section.

17



Birth/Infant Death Data Set, from the National Center for Health Statistics
(NCHS).

The first type of diagnostic graph shown here plots a predetermined outcome
– mother’s age – against each assignment variable in turn using the “slicing”
approach. Linear regression lines are added to the points on each side of the
cutoff. Several bandwidths were considered for birthweight and gestation age
(25g 50g, 100g and 200g for birthweight and one to five weeks for gestation age).
None of these choices resulted in a plot that displayed an obvious discontinuity
at the cutoff, which is consistent with a valid MMRD design. The graphs shown
in the paper use a bandwidth of 100g for birthweight and one week for gestation
age.

The contour plot and the “slicing” histograms, shown next, examine the
density of the assignment variables near the cutoff. In both plots, signs of
a significant discontinuity at the treatment frontiers are absent. Again, this
result is to be expected if the MMRD assumptions are not violated.

While no single one of these diagnostic plots can by itself guarantee the
validity of the MMRD design, taken together, they provide some degree of
assurance that there are no obvious violations of the MMRD assumptions.

4 Estimation

Most estimands in economics seek to capture a global relationship between
covariates and the outcome variable. By contrast, the estimand of interest in
RD designs – being the difference between point estimates of two regression
functions at their boundaries – is highly local and far more uncertain. As a
result, issues such as specification error and boundary effects are particularly
relevant for treatment effect estimation in RD designs.

This has led to a substantial body of literature investigating a variety of para-
metric and nonparametric estimation methods for conventional RD. As survey
papers on RD such as Imbens and Lemieux (2008) and Lee and Lemieux (2010)
document, some degree of consensus on estimation procedures has developed
over time for conventional RD. By contrast, there has been scant research on
methods for MRD, and thus, little by way of consensus on MRD estimation.

This section begins by introducing a few of the most common estimation
approaches for conventional RD, and discusses their advantages and disadvan-
tages. Then, I describe an estimation method for MMRD proposed by Papay et
al. (2011a). I propose a modification of their method for MDRD estimation and
suggest a generalization of the cross-validation procedure they define. Finally, I
develop a novel estimation method that addresses some of the shortcomings of
popular RD estimation approaches, and can be easily implemented for MDRD
as well as MMRD.
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Figure 2: Plots of a predetermined outcome as a function of an assignment
variable, created using the “slicing” approach. Each of these graphs considers
only neonates with birthweights within a certain interval, and plots mother’s
age (the predetermined outcome) as a function of gestation age (the assignment
variable). A linear regression line is fitted to the points on each side of the
cutoff. Source: National Center for Health Statistics (2008).
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Figure 3: Plots of a predetermined outcome as a function of an assignment
variable, created using the “slicing” approach. Each of these graphs considers
only neonates with gestation ages within a certain interval, and plots mother’s
age (the predetermined outcome) as a function of birthweight (the assignment
variable). A linear regression line is fitted to the points on each side of the
cutoff. Source: National Center for Health Statistics (2008).
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Figure 4: Contour Plot to Examine the Density of the Assignment Variables.
Darker regions represent higher frequencies of observations. Source: National
Center for Health Statistics (2008).
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Figure 5: “Slicing Histograms” of Gestation Age for Neonates with Birthweights
in Various Intervals. Source: National Center for Health Statistics (2008).
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Figure 6: “Slicing Histograms” of Birthweight for Neonates with Various Ges-
tation Ages. Source: National Center for Health Statistics (2008).
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4.1 Estimation in Conventional RD

A common approach for conventional RD estimation in the past was to fit a
global polynomial to each side of the cutoff (with the outcome variable as a
function of the assignment variable). This approach has the advantage of being
easy to implement, but has come under increasing criticism for various reasons,
including sensitivity of the treatment estimate to the order of polynomial, and
the boundary effects of higher-order polynomial fits14.

RD estimation via local linear regression has become increasingly widespread
of late, based on properties proved by Fan and Gijbels (1992) and Porter (2003).
Yet, while the local linear estimator does not have boundary effects, implemen-
tation requires specification of a bandwidth. Generally, choosing an optimal
bandwidth involves a variance-bias trade-off. In particular, both the estima-
tor’s squared bias and its variance contribute to the expected mean squared
error (MSE) of the treatment effect, which one seeks to minimize. Choos-
ing a smaller bandwidth leads to lower bias, but also higher variance due to
the smaller number of observations available for estimation, and vice versa for
choices of larger bandwidths.

Several methods have been proposed for a systematic way to choose an op-
timal bandwidth, and one of the more popular approaches that have emerged
is that taken by Imbens and Kalyanaraman (2011), henceforth IK. The IK al-
gorithm involves estimating the density of the assignment variable, as well as
several orders of derivatives for the mean regression function. The optimal band-
width implied by the IK algorithm can be written as hopt = CK · Σ1/5 ·N−1/5,
where CK is a constant which depends on the choice of kernel, and Σ is a func-
tion of the assignment variable’s density as well as the mean regression function.
Provided certain assumptions are satisfied, the bias in the local linear treatment
effect estimate using this bandwidth tends to zero at a rate of Op(N

−2/5).
Asymptotic properties of the IK bandwidth selection algorithm are based on

the assumption that the assignment variable is continuous. Yet, most real world
datasets only contain variables that are measured in discrete units. Hence, as
Lee and Card (2008) note, the bandwidth cannot be made arbitrarily small even
as the sample size tends to infinity. Essentially, discrete measurement of the as-
signment variable implies that there exists a neighborhood around the cutoff
with no observations, thus resulting in an “irreducible gap”15. In practice, the
discrete nature of the assignment variable is unlikely to be a serious issue if
the assignment variable takes many possible values (for instance, birthweight
measured in grams). However, there are also many RD designs with assign-
ment variables that take relatively few unique values or are measured in coarse
intervals (such as age, which is often reported in years). In such cases, it is
not clear whether the IK algorithm will result in an optimal bandwidth choice.

14For a more detailed discussion about the pitfalls of using global polynomials for RD
estimation, see for instance, Gelman and Imbens (2014).

15Strictly speaking, it is possible that some observations may have assignment variable
values that are exactly equal to the cutoff. However, this does not help with the “irreducible
gap” problem since observations on both sides of the cutoff are required for estimation.
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Moreover, discreteness of assignment variables will likely remain an issue even
as increasingly large datasets become available in the age of big data, since the
precision of measurements will still be limited by a number of factors, including
privacy concerns16.

4.2 Local Linear Regression for MRD

Most MRD applications in the literature have focused on estimating scalar quan-
tities, such as those described in Wong et al. (2013). Section 2 of this paper
argued that important heterogeneities in the treatment effect may be lost when
summarizing treatment effects as scalar quantities, and proposed estimating
treatment effect functions instead. The only estimation of MRD treatment
functions that I am aware of uses a local linear regression approach for MMRD.
This method is explained in Papay, Willett and Murnane (2011a), who also
implement this estimation in Papay, Willett and Murnane (2011b).

This subsection will begin by describing the MMRD estimation method of
Papay et al. (2011a), before introducing a modified version of their method
that can be used for MDRD. Then, I will discuss advantages and disadvantages
of this estimation approach, and propose a generalization of their bandwidth
selection procedure that addresses some (but not all) of its shortcomings.

4.2.1 MMRD Estimation via Local Linear Regression, as described
in Papay et al. (2011a)

Papay et al. (2011a) consider estimation of MMRD via local linear regression,
with optimal bandwidth (for the two assignment variables) chosen using a gen-
eralization of LM CV, the cross-validation (CV) procedure described in Ludwig
and Miller (2005), whom I abbreviate as LM. Using the notation introduced in
section 2 of this paper, the local linear regression proposed by Papay et al. can
be written as:

(10)

E[Yi|X1i, X2i] =β0 + β1D1i + β2D2i + β3(D1i ×D2i)

+ β4X1i + β5X2i + β6(X1i ×X2i)

+ β7(X1i ×D1i) + β8(X2i ×D2i)

+ β9(X1i ×D2i) + β10(X2i ×D1i)

+ β11(X1i ×X2i ×D1i) + β12(X1i ×X2i ×D2i)

+ β13(X1i ×D1i ×D2i) + β14(X2i ×D1i ×D2i)

+ β15(X1i ×X2i ×D1i ×D2i).

This regression equation results in the following four discontinuous linear
surfaces, each defined over a quadrant of the assignment variable space:

16For example, it is unlikely that date of birth or precise geographical location will be made
freely available to researchers, which will be an issue for RD designs that use age or proximity
to geographic boundaries as assignment variables.
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E[Yi|D1i = 1, D2i = 1, X1i, X2i] = (β0+β1+β2+β3)+(β4+β7+β9+β13)X1i

+ (β5 + β8 + β10 + β14)X2i + (β6 + β11 + β12 + β15)(X1i ×X2i),

E[Yi|D1i = 0, D2i = 1, X1i, X2i] = (β0 + β2)

+ (β4 + β9)X1i + (β5 + β8)X2i + (β6 + β12)(X1i ×X2i),

E[Yi|D1i = 0, D2i = 0, X1i, X2i] = β0 + β4X1i + β5X2i + β6(X1i ×X2i),

E[Yi|D1i = 1, D2i = 0, X1i, X2i] = (β0 + β1)

+ (β4 + β7)X1i + (β5 + β10)X2i + (β6 + β11)(X1i ×X2i).

The treatment functions are obtained by taking the differences between these
surfaces along the treatment frontiers F12, F23, F34 and F14

17. Hence, the
treatment functions are given by:

(11)

τ12(x2) = (β1 + β3) + (β10 + β14)x2 for x2 ≥ 0,

τ23(x1) = β2 + β9x1 for x1 ≤ 0,

τ34(x2) = β1 + β10x2 for x2 ≤ 0,

τ14(x1) = (β2 + β3) + (β9 + β13)x1 for x1 ≥ 0.

As is the case for conventional RD, the performance of local linear regression
for MRD estimation depends on appropriate bandwidth choice. Papay et al.
(2011a) recommend bandwidth selection using a two-dimensional generalization
of LM CV, rather than to generalize the IK algorithm to higher dimensions. The
authors cite concerns over unknown properties of the IK algorithm when the
assignment variable has discrete support when explaining their choice to use
LM CV.

LM CV is a type of CV that is specifically designed for estimation of a
boundary point. The motivation for LM CV is the fact that estimation of mean
potential outcomes at the treatment frontiers only uses observations on one
side of the frontier. Since LM CV was originally designed for conventional RD,
Papay et al. (2011a) use a two-dimensional generalization to jointly select the
bandwidths h∗1 and h∗2 for the assignment variables X1 and X2 respectively.

To elaborate, denote the candidate (joint) bandwidth under consideration
in a MMRD by (h1, h2), and suppose that the fitted value Ŷi∗(h1, h2) for an ob-
servation (Yi∗ ,Xi∗) is desired. Also, assume that Xi∗ lies in the first quadrant,
R1 of the assignment variable space, so that the frontiers relevant to (Yi∗ ,Xi∗)
are F12 and F14. Estimation of the mean potential outcome for a point in R1

17Strictly speaking, in order to compute these differences, the surfaces need to be extended
continuously so that their domains of definition include the treatment frontiers.
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arbitrarily close to these treatment frontiers will typically only use points to
the “north” or “east” of it. Therefore, in order to mimic the estimation of a
boundary point, instead of using all points that are “close” to (Yi∗ ,Xi∗) in the
assignment variable space,

{(Yj ,Xj) : |X1j −X1i∗ | ≤ h1 and |X2j −X2i∗ | ≤ h2} \ {(Yi∗ ,Xi∗)}

to estimate Ŷi∗(h1, h2) as one might do for standard CV, only points that are
“close” to (Yi∗ ,Xi∗) and to the “northeast” of (Yi∗ ,Xi∗) are used, i.e.

{(Yj ,Xj) : 0 ≤ X1j−X1i∗ ≤ h1 and 0 ≤ X2j−X2i∗ ≤ h2} \ {(Yi∗ ,Xi∗)}.

To simplify notation, denote this set by Si∗(h1, h2). The following plot
clarifies this concept by considering four points – one in each quadrant of the
assignment variable space – and the regions determining Si(h1, h2) for each
point according to this bandwidth selection procedure.

After determining Si∗(h1, h2) for observation (Yi∗ ,Xi∗) for a given band-
width, the fitted value for this point, Ŷi∗(h1, h2), is obtained via a linear regres-
sion that only uses points in Si∗(h1, h2)18. To be explicit, one first estimates
the OLS regression

(12) Yi = γ̂0 + γ̂1X1i + γ̂2X2i + γ̂3(X1i ×X2i) + ε̂

for (Yi,Xi) ∈ Si∗(h1, h2),

and then obtains the fitted value for (Yi∗ ,Xi∗) using the formula

(13) Ŷi∗(h1, h2) = γ̂0 + γ̂1X1i∗ + γ̂2X2i∗ + γ̂3(X1i∗ ×X2i∗).

The MSE for each candidate bandwidth (h1, h2)

(14) MSE(h1, h2) =
1

N

N∑
i=1

(Ŷi(h1, h2)− Yi)2

is calculated, and the bandwidth resulting in the lowest MSE is chosen as the
optimal bandwidth (h∗1, h

∗
2).

Finally, the local linear regression is estimated using the subset of observa-
tions

{(Yi,Xi) : |X1i| ≤ h∗1 or |X2i| ≤ h∗2}.
18The procedure described in this section uses a rectangular kernel (i.e. OLS regression),

as Papay et al. do, for simplicity of exposition. The estimation can easily be modified to
accommodate other kernel choices, by using a weighted least squares regression with weights
that depend on the choice of kernel. Two other popular choices of kernel (triangular and
Epanechnikov) were discussed in the previous section on graphical analysis. An application
of local linear estimation for MMRD that does not use a rectangular kernel can be found in
Snider and Williams (2015). Incidentally, Snider and Williams mention in a footnote that
their attempt at bandwidth selection via cross-validation was unsuccessful, without providing
details about their implementation method.
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Figure 7: This figure shows the regions (shaded rectangles) determining
Si(h1, h2) for four (solid black) points, as defined by the bandwidth selection
procedure described in Papay et al. (2011a). In addition to the candidate band-
width (h1, h2), the set of observations that are used to estimate the fitted value
of a point is also determined by the specific treatment region that the point lies
in. The determination of the inclusion or exclusion of a side of the rectangle in
the relevant region reflects how the treatment conditions are defined along the
treatment frontiers.

28



4.2.2 MDRD Estimation via Local Linear Regression

While the estimation approach by Papay et al. (2011a) that I just described is
meant for MMRD (with four treatments), it can easily be modified for MDRD.
In particular, there is no reason to revise the bandwidth selection procedure
for MDRD, so the only change needed is to tweak the local linear regression
function appropriately19.

I retain notation introduced earlier in the text, so that the dummy variable
for receiving treatment in MDRD is Wi = D1i×D2i. The local linear regression
equation for MDRD is thus:

(15) E[Yi|X1i, X2i] = β0 + β1Wi + β2X1i + β3X2i

+ β4(X1i ×X2i) + β5(Wi ×X1i) + β6(Wi ×X2i) + β7(Wi ×X1i ×X2i).

This regression equation results in the following two discontinuous linear
surfaces, the first being defined over the non-negative quadrant R1, and the
second being defined over the rest of the assignment variable space R2∪R3∪R4:

E[Yi|Wi = 1, X1i, X2i] = (β0 + β1)

+ (β2 + β5)X1i + (β3 + β6)X2i + (β4 + β7)(X1i ×X2i),

E[Yi|Wi = 0, X1i, X2i] = β0 + β2X1i + β3X2i + β4(X1i ×X2i).

The treatment functions are obtained by taking the differences between these
surfaces along the treatment frontiers F1 and F2, i.e. the non-negative x1- and
x2-axes20. Hence, the treatment functions are given by:

(16)
τ1(x2) = β1 + β6x2 for x2 ≥ 0,

τ2(x1) = β1 + β5x1, for x1 ≥ 0.

The subset of points used for this local linear regression is

{(Yi,Xi) : |X1i| ≤ h∗1 or |X2i| ≤ h∗2}∩{(Yi,Xi) : X1i ≥ −h∗1 and X2i ≥ −h∗2}.

4.2.3 Advantages and Disadvantages of Local Linear Regression for
MRD Estimation

Some advantages of local linear regression for boundary estimation (based on
the estimator’s asymptotic properties) were mentioned earlier in this paper.

19This change in the regression function is required due to differences in the treatment
frontiers for MDRD and MMRD. Specifically, the union of the treatment frontiers (F12 ∪
F23 ∪ F34 ∪ F14) for the latter comprises of the entire x1- and x2-axes, so the regression
function allows for discontinuities along all of the two axes. By contrast, the union of the
treatment frontiers for the latter (F1 ∪F2) comprises of only the non-negative part of the two
axes, so it would not make sense for the regression function to be discontinuous along the
negative parts of the axes (since there is no treatment effect to be estimated there). The local
linear regression function that I introduce for MDRD ensures that the regression function is
only allowed to be discontinuous along the treatment frontiers F1 and F2.

20As in the case for MMRD, in order to compute these differences, the surfaces need to be
extended continuously so that their domains of definition include the treatment frontiers.
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Another advantage of this approach is that the standard regression outputs –
the estimated coefficients and their covariance matrix – are very convenient for
hypothesis testing.

For instance, consider a MDRD estimation, and denote the vector of coeffi-
cient estimates and its covariance matrix respectively by β̂ and Σ̂ (with rows and
columns indexed from 0 to 7, in order to match the indices of the coefficients).
For simplicity of exposition, assume that the error term is normally distributed.
To obtain point-wise confidence intervals for the treatment function, I first de-
note, for a given value of x2 ≥ 0, the random variable representing the treatment
effect estimate at the point by T , and express the estimated treatment effect as

τ̂1(x2) = c′β̂, where c′ = [0 1 0 0 0 0 x2 0].

The (approximate) distribution of T is thus given by T ∼ N(c′β̂, c′Σ̂c)21, which
allows for easy hypothesis testing of whether the estimated treatment function
at a given point is statistically different from zero (at a specified significance
level).

Another hypothesis test of interest is whether there is statistical evidence of
a non-constant treatment effect. In this example, the hypothesis test amounts
to whether the confidence interval for β̂6 contains zero, which is trivial since the
estimated coefficient is (approximately) normally distributed and its variance is

given in the regression output as Σ̂6,6.

However, the attractive theoretical properties of estimation via local linear
regression are predicated on appropriate bandwidth choice. In practice, the task
of selecting a suitable bandwidth has been a real difficulty which has not even
been fully resolved for conventional RD. The uncertainty over bandwidth choice
is exacerbated in MRD since the bandwidths for multiple assignment variables
must be jointly selected, making this a multidimensional problem.

The bandwidth selection procedure just described is unsatisfactory in various
ways. As LM (2005) themselves point out, CV estimates of the loss function are
typically relatively flat. LM take this as an indication of a more general prob-
lem, that asymptotic properties of CV methods imply extremely slow rates of
convergence. Moreover, the CV procedure documented by Papay et al. (2011a)
has several other shortcomings, which I discuss below.

The first concerns a technical issue that the earlier description glosses over.
The problem is that for a candidate bandwidth (h1, h2), the set of observations
Si∗(h1, h2) that are used to obtain a fitted value for (Yi∗ ,Xi∗) may not con-
tain enough observations with unique combinations of the Xi to fit the linear
regression, so that predicted values for these points may be undefined22. While

21This distributional result is only an approximation because β̂ follows a t-distribution,
rather than a normal distribution. However, this approximation is likely to be good even for
moderate sample sizes.

22In fact, this will always be the case for points. For instance, consider the point Xi in the
non-negative quadrant R1 with the largest values of X1i and X2i. By definition, there are no
points to the northeast of this particular point, and thus, Si(h1, h2) is empty.
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Papay et al. (2011a) do not mention this problem in their discussion, I take the
approach of discarding these points and computing the MSE over the remaining
points23.

Second, as pointed out by IK (2011), this procedure implicitly selects a
bandwidth that is optimal for fitting the mean regression function over the entire
assignment variable space, rather than simply close to the treatment frontiers.
To see why this may be problematic, consider an example where there is a greater
density of observations near the treatment frontiers than further away, and
denote the true optimal bandwidth by (hopt1 , hopt2 ). The sparse points that are
far away from the treatment frontier may in fact cause the procedure described
by Papay et al. to select a bandwidth (h∗1, h

∗
2) that is larger than (hopt1 , hopt2 ).

This is because the true optimal bandwidth (hopt1 , hopt2 ) for estimation at the
treatment frontiers is too small for these points (due to the sparseness of points
in their neighborhoods), leading to the selection of a larger bandwidth as a
compromise. Heteroskedasticity may also result in a biased bandwidth choice.

Third, the bandwidth selection procedure is computationally expensive. For
each candidate bandwidth (h1, h2), the algorithm involves a loop over all obser-
vations in the dataset. Within this loop, for each observation i, the algorithm
must determine Si(h1, h2), fit a local linear regression using points in this set and
obtain the fitted value Ŷi(h1, h2). Moreover, the number of potential bandwidth
choices is large, since the search for an optimal bandwidth is being conducted
on a multidimensional grid.

4.2.4 Generalization of Bandwidth Selection Procedure described in
Papay et al. (2011a)

In order to mitigate some of these problems, I propose a modification of the CV
procedure described in Papay et al. (2011a). In fact, the method I propose is a
more general version of the CV procedure just discussed, and is closer in spirit
to the original LM CV approach for conventional RD.

The original method implemented in LM (2005) does not compute the MSE
over all points, as Papay et al. (2011a) do. Instead, only observations within five
percentage points of either side of the cutoff are used for bandwidth selection. IK
(2011) consider a slight generalization of LM CV by introducing an additional

23It is not obvious that discarding points for which fitted values cannot be obtained (for a
given candidate bandwidth) is the “right” thing to do. Consider a point that does not have
“extreme” values of X1i and X2i (e.g. not in the northeast corner of R1, the northwest corner
of R2, and so forth), and suppose that there are insufficiently many points in Si(h1, h2) to
estimate its fitted value. This is in fact a sign that for this point at least, the candidate
bandwidth is “too small”. Hence, by ignoring such points when computing MSE, useful
information for bandwidth choice is lost.

One possible way to deal with this issue is to incorporate a penalty term for points which
have undefined fitted values, and to modify the criterion function (currently the MSE), to
be a linear combinations of the sum of squared errors and the penalty term. However, this
introduces another layer of complexity into a bandwidth selection procedure that is already
rather computationally burdensome, and does not address the method’s other shortcomings
mentioned in the text.
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parameter δ which specifies the percentage of points to use on either side of the
cutoff for bandwidth selection.

This idea of using only a proportion of points close to the threshold for
bandwidth selection does not extend neatly to MRD. For instance, suppose one
decides to use δ percent of the points in R1 that are close to the treatment
frontiers. Since there are two relevant frontiers for this region (the non-negative
x1- and x2- axes), it is not obvious how to devise an objective method that
allocates this limited quota of points “fairly” between regions in R1 close to
each frontier, as well as along each frontier.

Therefore, I take the approach of using the quantiles for each assignment
variable in each of the four quadrants of the assignment variable space. Specif-
ically, for a chosen δ ∈ (0, 1], I define the following quantiles:

• Let p1 and q1 be the δth quantiles of X1i and X2i respectively, for obser-
vations in R1 (i.e. observations with D1i = 1 and D2i = 1).

• Let p2 and q2 be the (1−δ)th and δth quantiles of X1i and X2i respectively,
for observations in R2 (i.e. observations with D1i = 0 and D2i = 1).

• Let p3 and q3 be the (1 − δ)th quantiles of X1i and X2i respectively, for
observations in R3 (i.e. observations with D1i = 0 and D2i = 0).

• Let p4 and q4 be the δth and (1−δ)th quantiles of X1i and X2i respectively,
for observations in R4 (i.e. observations with D1i = 1 and D2i = 0).

For MMRD, the set of observations used for bandwidth selection is

4⋃
k=1

(
{(Yi,Xi) : |X1i| ≤ |pk| and |X2i| ≤ |qk|} ∩Rk

)
.

For MDRD, the precise definition is slightly messier, although it is also the
case that only observations close to the treatment frontiers (as defined by pk
and qk) are used: (

{(Yi,Xi) : |X1i| ≤ |p1| or |X2i| ≤ |q1|} ∩R1

)
⋃(

{(Yi,Xi) : X1i ≥ p2} ∩R2

)
⋃(

{(Yi,Xi) : |X1i| ≤ |p3| and |X2i| ≤ |q3|} ∩R3

)
⋃(

{(Yi,Xi) : X2i ≥ q3} ∩R4

)
.

While this parameter δ does not represent the proportion of points in each
treatment region being used, it still controls the amount of data close to the
treatment frontiers that is used for bandwidth selection. For instance, the pro-
cedure described in Papay et al. (2011a) that uses all observations corresponds
to the special case of δ = 1.
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By only using points that are “close” (“closeness” being controlled by δ)
to the treatment frontiers for estimation, the problems mentioned above are
ameliorated to a certain extent. For suitably small choices of δ, observations
that “too far” from the treatment frontiers are no longer used for bandwidth
selection. Moreover, the computational burden for bandwidth selection is eased
slightly since this method uses fewer observations.

However, this modification does not solve other problems with CV mentioned
earlier. Furthermore, this method raises an additional question concerning the
choice of δ. Both LM and IK use subjective judgment to determine the pro-
portion of data near the threshold to use. The lack of an objective method to
determine δ is especially problematic if the bandwidth selected by this approach
turns out to be sensitive to the choice of δ.24

The discussion in this subsection reveals that, despite the attractive proper-
ties of local linear regressions for boundary estimates, performance in practice
can be hampered by inappropriate bandwidth choice. Procedures for bandwidth
selection suffer from various problems, which tend to be exacerbated when these
methods are extended from conventional RD to MRD.

In light of these difficulties, this paper proposes a non-parametric method
for MRD estimation that does not require bandwidth selection – thin plate
regression splines. The method is closely related to thin plate splines, which
is the multidimensional analogue of a penalized spline method that Rau (2011)
proposed for estimation in conventional RD. The next subsection covers MRD
estimation via thin plate regression splines.

4.3 Thin Plate Regression Splines

A thin plate spline has various properties that make it attractive for MRD esti-
mation. First, it is a local estimator (unlike global polynomials), which makes
it less susceptible to boundary effects. Second, the flexibility of this method
allows for easy estimation of non-constant treatment effects. In particular, one
does not need to specify a functional form for the treatment function estimate.
Finally, it is far more convenient to fit than other popular local smoothing meth-
ods. For instance, local linear regression and cubic splines require bandwidth
and knot selection respectively, in order to control the smoothness of the fitted
surface (i.e. to avoid over-fitting or over-smoothing). In the context of MRD,
both bandwidth and knot selection require a grid search in multiple dimensions,

24One possible way to choose δ objectively is to treat δ as an additional tuning parameter,
and jointly determine the optimal bandwidth as well as δ using the CV method just described.
Unfortunately, in addition to imposing significant additional computational burden (since the
inclusion of δ as a tuning parameter adds yet another dimension to the grid search for optimal
parameter values), this approach may not yield a good choice of δ or bandwidth. For instance,
suppose that “irrelevant” points that are far from the treatment frontiers come from a data-
generating process that is much closer to linear than for points closer to the frontiers. Including
these “irrelevant” points may reduce MSE significantly, so the resulting choice of δ is larger
than optimal. Hence, even when δ is used as a tuning parameter, “irrelevant” observations
far from the frontiers can have substantial influence on bandwidth selection.
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which can be computationally expensive. By contrast, the smoothness of thin
plate splines is controlled by a single scalar tuning parameter.

4.3.1 Thin Plate Splines

The concept of thin plates splines is first introduced in Duchon (1977), and is
later revisited in Wood (2003) and Wood (2006). A thin plate spline seeks to
estimate a function of multiple variables from noisy data, with the smoothness
of this function being controlled by a penalty term. More formally, given N
observations (yi,xi), xi ∈ Rd from a data-generating process

yi = g(xi) + εi,

where g is a smooth function and εi are random errors, the smoothing spline f̂i
is the estimate of g that minimizes the following quantity:

(17)

N∑
i=1

(yi − f(xi))
2 + λJmd(f).

This minimand is the sum of a loss function and a penalty term, with Jmd in
the penalty term defined by:

(18) Jmd ≡
∫
...

∫
Rd

∑
ν1+...+νd=m

m!

ν1!...νd!

(
∂mf

∂xν11 ...x
νd
d

)2

dx1...dxd.

The choice of m is required to satisfy 2m > d , although typically 2m > d + 1
is also respected so that the estimated function is “visually smooth”. If one is
dealing with two assignment variables (d = 2), then m = 2 would be a good
choice, in which case the penalty term is:

J22 =

∫ ∫ (
∂f

∂x21

)2

+ 2 ·
(

∂f

∂x1∂x2

)2

+

(
∂f

∂x22

)2

dx1dx2.

The coefficient on the penalty term, λ, is a tuning parameter that is typically
chosen by generalized cross-validation (GCV), which is a modification to an-
other popular choice – leave-out-out-cross-validation (LOOCV). GCV is often
preferred to LOOCV because it is less computationally expensive, and is invari-
ant to rotation of the outcome vector and basis matrix25.

25In fact, the popularity of LOOCV (relative to k-fold cross-validation for instance) is also
partly due to computational reasons. It turns out that instead of fitting N different models
to find the LOOCV score for a particular choice of λ, there is an easy formula which only
requires a single model fit,

LOOCV (λ) =
1

N

N∑
i=1

[yi − (Ay)i]
2

(1−Aii)2
,

where A is the influence matrix for the model fit using λ (so that A is actually a function of
λ, although the notation does not reflect this). The GCV score is given by a similar formula:

GCV (λ) =
N ||y −Ay||2

[N − tr(A)]2
.
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4.3.2 Thin Plate Regression Splines

Despite the advantages of thin plate splines outlined at the start of this sub-
section, a major disadvantage is its computational cost, which remains a major
obstacle to its widespread use in practical statistical work. At present, thin
plate splines are most commonly used in the special case of d = 1 (where the
method is known by a number of different names such as “penalized splines”
or “smoothing splines”) since there exists an efficient algorithm for this special
case26. Denoting the number of unique combinations of covariate values by n
(which may be smaller than the total number of observations N due to discrete
measurements of data), the computational cost for penalized splines is on the
order of O(n) as opposed to O(n3) for the general case. Hence, the primary mo-
tivation for the construction of thin plate regression splines (henceforth TPRS)
is to provide a relatively computationally inexpensive alternative to thin plate
splines.

A major reason for the computational expense in fitting thin plate splines
is that the basis matrix is of rank n. Yet, this seems “wasteful” in the sense
that the effective degrees of freedom27 tends to be a small proportion of n. The
idea behind TPRS is to approximate thin plate splines using a low rank basis
matrix (of say, rank k), obtained by truncating the most “wiggly” components
of the thin plate spline (which were penalized heavily anyway in the thin plate
spline fit), while leaving those components with “zero wiggliness” untouched28.
This modification results in significant computational cost savings – the cost of
fitting a TPRS is at most O(kn2), as opposed to O(n3) for thin plate splines.
Moreover, the computationally costly model selection algorithm is only O(k2n)
for TPRS, compared to O(n3) for thin plate splines.

When fitting a TPRS, one must choose the basis dimension k, in addition to
the smoothness parameter λ, so it may seem that tuning the model for TPRS
is more tedious than for thin plate splines. However in practice, for a given
value of k, the actual effective degrees of freedom is controlled by λ. So, the
choice of k is not critical as long as it is chosen large enough so that the model
is not overly restricted by the basis dimension (i.e. k should be chosen to be
larger than the effective degrees of freedom believed to be required). Kim and
Gu (2004) show that basis dimension should scale as n2/9, and suggest 10n2/9

based on simulations. The appendix in this paper provides an example exploring
the sensitivity of TPRS treatment effect estimates to the choice of k.

Standard errors for the model parameters in TPRS can be derived using
a Bayesian approach to uncertainty estimation, assuming a fixed value of the
smoothing parameter λ.29 If the error term in the data-generating process is
normal, then the posterior distribution of the model parameters is multivari-
ate normal. Otherwise, approximate normality of the posterior distribution is

26Rau (2011) discusses an estimation approach for conventional RD using penalized splines
(i.e. thin plate splines with d = 1).

27The effective degrees of freedom is defined as the trace of the influence matrix.
28Interested readers should refer to the appendix for additional details on the approximation

of thin plate splines by TPRS.
29Readers may refer to Wood (2006) for a derivation of this result.
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justified by large sample theory.

4.3.3 MRD Estimation via TPRS

MRD estimation via TPRS is easy to implement. First, one would fit a sepa-
rate TPRS for observations in each treatment region in the assignment variable
space. Point estimates of the treatment effect along each treatment frontier can
thus be obtained by taking the difference between fitted values (from the two
TPRS functions estimated using data in the two adjacent treatment regions).

To avoid any ambiguity, I explicitly state the formulae for the estimated
treatment effect functions, starting with those for MDRD. Denote the fitted
TPRS functions by f̂1(x1, x2) and f̂0(x1, x2), these being the estimates of

E[Y (1)|X1 = x1, X2 = x2)] and E[Y (0)|X1 = x1, X2 = x2)],

using data from R1 and R2 \ R1 respectively. The MDRD treatment effect
estimates are thus given by:

(19)
τ̂2(x2) ≡ f̂1(0, x2)− f̂0(0, x2) for x2 ≥ 0,

τ̂2(x1) ≡ f̂1(x1, 0)− f̂0(x1, 0) for x1 ≥ 0.

Next for MMRD, I denote the fitted TPRS functions for observations in regions
R1, R2, R3 and R4 respectively by f̂1, f̂2, f̂3 and f̂4. Using this notation, the
treatment effect estimates for MMRD can be expressed as:

(20)

τ̂12(x2) ≡ f̂1(0, x2)− f̂2(0, x2) for x2 ≥ 0,

τ̂23(x1) ≡ f̂3(x1, 0)− f̂2(x1, 0) for x1 ≤ 0,

τ̂34(x2) ≡ f̂4(0, x2)− f̂3(0, x2) for x2 ≤ 0,

τ̂14(x1) ≡ f̂1(x1, 0)− f̂4(x1, 0) for x1 ≥ 0.

Approximate Bayesian confidence intervals for the point estimates of these
treatment effect functions can be obtained using the posterior distributions of
point estimates from the fitted TPRS functions. For concreteness, I take the
estimation of τ1(x2) in MDRD as an example, although the procedures for
τ2(x1) as well as for MMRD are completely analogous. Following the Bayesian
framework, I consider the parameters

f1(0, x2) = E[Y (1)|X1 = 0, X2 = x2)] and f0(0, x2) = E[Y (0)|X1 = 0, X2 = x2)]

as random variables, which I denote by V1 and V0 respectively. This yields

V1 ∼ N(f̂1(0, x2), σ2
1) and V0 ∼ N(f̂0(0, x2), σ2

0),

where the moments of these normal distributions are known. It follows that

V1 − V0 ∼ N(f̂1(0, x2)− f̂0(0, x2), σ2),
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where σ2 = σ2
1 + σ2

0 − 2Cov(V1, V0). Although the value of Cov(V1, V2) is
unknown, an upper bound for σ2 can still be found by using the inequality
Cov(V1, V0) ≥ −σ1σ0, so that a conservative Bayesian confidence interval for
τ̂1(x2) may be obtained.

On the other hand, the assumption of maximum negative covariance between
V1 and V0 may be too pessimistic. One may think that the correlation between
expected potential outcomes at any point on the frontier should be positive.
Hence, a more optimistic confidence interval may be obtained by assuming zero
covariance (and hence independence, due to normality) between V1 and V0.30

Hence, to recap the discussion about point-wise confidence intervals for treat-
ment effect estimates along the frontiers, one may either use a conservative
Bayesian confidence interval which assumes, for τ̂1(x2) in a MDRD, that

V1 − V0 ∼ N(f̂1(0, x2)− f̂0(0, x2), (σ1 + σ0)2),

or a more optimistic confidence interval which assumes

V1 − V0 ∼ N(f̂1(0, x2)− f̂0(0, x2), σ2
1 + σ2

0).

5 Simulation

In this section, I conduct an extensive simulation study based closely on the
NBER paper by Kane (2003). Methods for graphical analysis and estimation
described earlier in this paper are demonstrated, and the strengths and weak-
nesses of each approach assessed.

5.1 Background on Original Paper

The design of this simulation study is based on the NBER paper by Kane
(2003), titled “A Quasi-Experimental Estimate of the Impact of Financial Aid
on College-Going”. The paper investigates how the CalGrant program affected
college going rates in California from 1998 to 1999 using a sharp regression-
discontinuity design. Eligibility for the CalGrant A program required that the
applicant’s high school GPA, parental income and asset (excluding home equity)
satisfy certain cutoff rules for each of these variables31. The number of awards
each year was fixed, so the GPA cutoff (which ultimately depended on the num-
ber of eligible applicants) was unknown at the time of application. This makes
high school GPA a particularly suitable assignment variable since it cannot be
manipulated precisely, thus ensuring that students’ GPAs near the threshold
are as-good-as-random.

30In fact, the optimistic confidence interval occupies the middle ground between the most
pessimistic and optimistic assumptions about Cov(V1, V0). Strictly speaking, the most op-
timistic assumption is that V1 and V0 are perfectly positively correlated, but such heroic
assumptions are not typically adopted for inference.

31There were actually two CalGrant programs (CalGrant A and B), but Kane focuses mainly
on estimating the impact of CalGrant A on college going.
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Since there are multiple assignment variables (GPA, income and assets) and
two mutually exclusive treatment conditions (eligibility/ineligibility for the Cal-
Grant program), this is a MDRD problem. Kane takes the “univariate” ap-
proach, estimating the treatment effects separately along each frontier. He
focuses mostly on the GPA threshold, where he finds approximately a three
percent increase in college going rate for applicants whose GPAs just pass the
threshold, relative to those whose GPAs just miss in 1998. Kane also considers
the income and asset thresholds, but for the most part, does not find statisti-
cally significant effects (possibly due to there being an insufficient number of
observations near these thresholds, especially for the asset threshold).

5.2 Generating the Simulated Dataset

Unfortunately, the original data for Kane’s paper is no longer available, so I
create simulated dataset that is similar to the original one based on summary
statistics and estimation results reported in the paper. Following the paper, I
focus on estimating the impact that CalGrant A eligibility had on college going
rates in 1998. My assignment variables are high school GPA and income, since
the original paper hardly presented any results for the asset threshold.

First, I generate the assignment variables so that their distributions approx-
imate those in the original paper. For high school GPA, I chose a scaled, shifted
and truncated beta distribution which is similar to the empirical distribution
in Kane’s paper. The income threshold varies for families of different sizes, so
I assume that the incomes for families of various sizes each follow a lognormal
distribution with separate means, choosing the proportions of different family
sizes so that the mean family size is close to that reported in the paper32. I
then restrict the data to observations with GPA between 2.50 and 3.60 and
exclude applicants who were eligible for both Cal Grants A and B, using this
reduced sample for all subsequent analysis, following Kane’s paper. The num-
ber of observations as well as the mean and median of assignment variables in
the reduced sample are very similar to those reported for the original data. I
then shift and rescale the variables so that they are centered at zero, with the
non-negative quadrant of the assignment variable space, R1 corresponding to
eligibility for the program. Histograms for the simulated covariate values in the
reduced sample are shown below.

Next, I select by trial-and-error, two data-generating processes (DGPs) to
generate the outcome variable (college going). In particular, I made sure that
the mean college going rate in the simulated data, as well as the regression results
obtained by applying Kane’s estimation approach for the GPA threshold to my
data, are similar to those presented in the paper. I focus on replicating Kane’s
estimation results for the GPA threshold for two main reasons – first, Kane’s
regressions for the GPA and income thresholds are incomparable; second, his
regression results for the GPA threshold are much stronger. To elaborate, Kane

32Clementi and Gallegati (2005) document that the empirical income distribution for the
bottom 97 to 99 percent of the population (which encompasses the population of interest for
Kane’s paper) is consistent with lognormal distribution.

38



Histogram of X1

X1

F
re

qu
en

cy

−0.6 −0.4 −0.2 0.0 0.2 0.4

0
20

0
40

0
60

0
80

0
10

00
12

00

Histogram of X2

X2

F
re

qu
en

cy

−100 −80 −60 −40 −20 0 20 40

0
10

00
20

00
30

00
40

00

Figure 8: Histograms of the simulated assignment variables after restricting the
data following Kane’s approach.

estimates regressions for the GPA threshold with and without other covariates,
using the subsamples of observations in 1998 and 1999 separately. For the
income threshold, Kane instead estimates a regression using the pooled sample
of observations from both years, with the inclusion of covariates. Yet, even using
a pooled sample and including other covariates to increase precision, Kane’s
estimate for the income threshold is insignificant at the 5 percent level and has
a higher p-value than the estimate at the GPA threshold using the 1998 sample
alone without the inclusion of other covariates. Moreover, there is insufficient
information about the covariates included in his income threshold regression to
simulate these variables realistically. Hence, it likely would have been a fruitless
task to attempt a reasonable replication of Kane’s estimates on the income
threshold.

Next, I describe the two DGPs I chose. Denoting the indicator for college
going by

Y ≡ I[Entered College in the Next Year],

the general form for the DGP is

Pr(Y = 1|X1, X2) = α0 + α1X1 + α2X
2
1 + α3X

3
1 + α4X2 + α5X

2
2 + α6X

3
1+

α7X1X2 + α8X
2
1X2 + α9X1X

2
2 + α10sin(X1) + α11sin(X2)+

Wi · (g(X1) + h(X2)),
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where

X1 ≡ (High School GPA)− (1998 GPA Cutoff),

X2 ≡ −
1

1000
· (Family Income− Income Cutoff), and

α0 = 0.82, α1 = 0.1, α2 = −0.01, α3 = −0.01, α4 = −2 · 10−4,

α5 = −10−6, α6 = −10−7, α7 = 10−6, α8 = −10−6, α9 = 10−6,

α10 = 0.01, α11 = 0.01.

For the first DGP, I assume constant treatment effect along both frontiers,
setting

g(X1) = h(X2) = 0.025 for all X1 and X2,

whereas for the second process, non-constant treatment effects are assumed,
with

g(X1) = 0.15 ∗
[
Φ

(
X1

0.25

)
− 0.5

]
and h(X2) = 0.06 ∗

[
Φ

(
X2

15

)
− 0.5

]
,

where Φ denotes the cumulative distribution function of a standard normal
random variable.

Using these probabilities, I generate the outcome variable Y corresponding
to the simulated assignment variables. As with the assignment variables, the
mean value of simulated outcomes is similar to the mean in the original data.

For estimation at the GPA threshold, Kane uses a probit regression with a
cubic polynomial in high school GPA and a dummy variable indicating whether
GPA passes the threshold. The DGPs were chosen so that running the same
regression on the simulated datasets produces results similar to Kane’s. The
following regression table shows estimates for the marginal impact of crossing
the GPA threshold on probability of college going. The point estimates and
standard errors from the original paper are similar to those obtained using the
simulated datasets, and the estimated treatment effect is significant at the 10
percent level in all three columns33.

The next plots display the DGPs I chose for the constant and non-constant
treatment effects respectively. Two features of these DGPs would seem to favor
estimation via local linear regression over estimation via TPRS (although it
turns out that TPRS still outperforms probit and local linear estimates on
these simulated datasets).

First, the plots clearly show that the DGPs exhibit sinusoidal behavior, es-
pecially along the X2 direction (which corresponds to income)34. These periodic

33Kane’s paper does not include other statistics from the regression other than sample size.
34In fact, the DGP also includes periodic behavior in the X1 direction (which corresponds

to GPA). However, due to the scaling of the assignment variables, only the periodic behavior
in the income direction is obvious. This is because the period of an oscillation in both the X1

and X2 direction is 2π, whereas the ranges of X1 and X2 in the plots are from −0.4 to 0.4
and −30 to 30 respectively.
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Table 1: Probit Regression for GPA Threshold

Dependent variable:

College Going

Kane’s Data Simulated Data Simulated Data
(Constant Treat) (Non-Constant Treat)

I[X1 ≥ 0] 0.029∗ 0.033∗ 0.030∗

(0.015) (0.017) (0.016)

Observations 11,750 11,750 11,750
Order of Polynomial 3 3 3
in GPA

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

terms were included in the DGP to test the robustness of the TPRS treatment
effect estimate. In particular, the true treatment effect along the GPA thresh-
old – being the difference between the discontinuous surfaces along F1 – is not
periodic because the sinusoidal behavior at the boundaries of the two surfaces
cancel out. However, the TPRS surfaces are unlikely to fit this periodic behav-
ior perfectly, so that the TPRS estimate – being the difference between the two
discontinuous TPRS surfaces – may still exhibit some periodic behavior which is
not canceled out in the difference35. By contrast, the true DGP hardly exhibits
any periodic behavior along the income threshold, so one may expect the TPRS
estimate to perform better along this threshold.

Second, periodic terms aside, the DGP is a cubic polynomial in X1 and X2,
with the quadratic, cubic and interaction coefficients largely dominated by the
linear coefficients on X1 and X2. Hence, one would expect that local linear
estimate to perform well given that the DGP is “close to linear”.

5.3 Graphical Analysis with the Simulated Data

In this subsection, I demonstrate several graphical analysis methods described
in section 3 using the simulated dataset with non-constant treatment effects.
In particular, I show the outcome discontinuity plots for the GPA and income
thresholds created using the “slicing” approach with a linear regression line fit
to observations on each side of the cutoff, as well as the corresponding “sliding
window” plots for the two cutoffs. In the “sliding window” graphs, I overlay the
true DGP for comparison (using the true probabilities of college going arbitrarily
close to each cutoff). Of course, lines representing the DGP would be absent in
“sliding window” plots for a real dataset (where the DGP is unknown).

35This periodic behavior has a less pronounced effect on the probit and local linear estimates,
since these methods are less flexible than the TPRS approach.
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Figure 9: Data-generating processes for the simulated datasets.
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Figure 10: These “slicing” method plots show the discontinuity in college-going
rate at the GPA threshold for applicants with different levels of parental income.
These graphs were created using the simulated dataset with non-constant treat-
ment effect.
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Figure 11: These “slicing” method plots show the discontinuity in college-going
rate at the income threshold for applicants with different GPAs These graphs
were created using the simulated dataset with non-constant treatment effect.
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Lines representing the DGP would be absent in “sliding window” plots for a
real dataset (where the DGP is unknown). This graph was created using the
simulated dataset with non-constant treatment effect.
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Figure 13: This “sliding window” plot shows the college-going rate for applicants
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The solid lines represent the actual “sliding window” plot, and the dashed lines
are the DGP for the simulated data, overlaid for comparison. Lines representing
the DGP would be absent in “sliding window” plots for a real dataset (where
the DGP is unknown). This graph was created using the simulated dataset with
non-constant treatment effect.
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The best fit lines for most of the “slicing” plots show a sizable discontinuity
at the threshold, which provides visual evidence of a non-zero treatment effect
for both frontiers. However, these plots fail to capture the fact that on both
frontiers, the true treatment effect functions are increasing and concave.

By contrast, the “sliding window” plot for the GPA threshold provides some
visual evidence that the treatment effect function τ1(x2) is increasing (even
if the gap between the solid lines is larger than the gap between the dashed
lines representing the DGP, i.e. the “graphical estimate” is biased upwards).
However, the same plot for the income threshold fails to capture this pattern.

Therefore, although the “slicing” and “sliding window” plots provide some
visual evidence on the discontinuity in outcome and of a non-constant treatment
effect, they are insufficient for making inferences about the shape and magnitude
of the treatment effect functions. A better understanding of the treatment effect
along the two frontiers can only be gained through formal estimation, which is
the topic of the remainder of this section.

5.4 Main Estimation Results

I estimate MDRD treatment effect functions for the two simulated datasets using
Kane’s probit approach, local linear regression and TPRS. For the local linear
estimate, I conduct a grid search for an optimal bandwidth over 100 possible
values of (h1, h2). Specifically, I allow h1 and h2 to range from 0.05 to 0.5 in
increments of 0.05, and 5 to 50 in increments of 5 respectively. Several different
values of δ (0.05, 0.10, 0.25, 0.50 and 1) are explored, although most of the
subsequent discussion focuses on the results for δ = 0.05.

Ideally, the estimated treatment function τ̂1(x2) along the GPA frontier F1

should have low bias and approximately follow the shape of the true treatment
function, which is flat for the DGP with constant treatment, and increasing but
concave for the DGP with non-constant treatment.

The performances of local linear regression and TPRS on the data with non-
constant treatment is of particular interest, since the main reason for preferring
estimation of treatment effect functions over scalar treatment effects is precisely
to capture such non-constant treatment effects. Moreover, the heterogeneous
treatment effect in this example has practical significance. Since X2 is defined by
how far below the income threshold an applicant’s parental income is, financial
constraints tend to represent a greater impediment to college going for applicants
with greater values of X2. Hence, it is reasonable to expect the CalGrant’s
impact to be increasing in X2. On the other hand, the opportunity cost of
lost wages may be more salient for very poor families (who have large values of
X2), which partially offsets the positive impact on college going, leading to an
increasing but concave treatment effect function.

First, I show the surfaces fitted using local linear regression and TPRS for
the two simulated datasets, which may be compared to the surfaces representing
the true DGPs shown earlier.

Next, in order to compare the performances of different estimation ap-
proaches, I plot the local linear, TPRS, and probit treatment function estimates
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Figure 14: Linear surfaces fitted for the simulated datasets using local linear
regression.
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Figure 15: TPRS surfaces fitted for the simulated datasets.
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for the GPA threshold on the same plots. Conservative 95 percent Bayesian con-
fidence intervals (CIs) for the TPRS estimates, as well as the true treatment
effects are also shown.

The plots for the estimated treatment functions along the GPA boundary F1

show that the TPRS estimate works reasonably well in practice. Its performance
on the GPA threshold is comparable to the probit regression, and far superior to
the local linear estimate. This is despite the TPRS estimates being affected (for
the worse) by the periodic behavior of the true DGPs near the GPA threshold
(as evidenced by the plots showing the fitted TPRS surfaces).

In the plot for constant treatment effect, although the TPRS estimate is
slightly wiggly, it does not exhibit an obvious increasing or decreasing trend,
and its bias is similar to Kane’s probit regression approach. For the plot with an
increasing and concave treatment function, the TPRS estimate is also increasing
and concave over most of F1. While the TPRS estimate is far from perfect (for
instance, it is biased upwards and its shape does not follow that of the true
function exactly), its 95 percent CIs contain the true treatment function in both
plots. Moreover, for the data with non-constant treatment effect, the TPRS CI
includes zero for small values of X2 and excludes zero for most larger values of
X2. This is in line with the true treatment function, which starts at zero and
increases with X2. The precision of the TPRS estimates on the GPA threshold
is similar to that of the probit estimate – significant at the 10 percent level but
not always at the 5 percent level.

By contrast, the local linear regression tends to exhibit higher bias in both
plots, and its shape is totally uninformative about the shape of the true treat-
ment function. In particular, as the linear surfaces and the treatment effect
plots show, the local linear estimate is decreasing in X2 for both datasets, even
though the true treatment functions are constant for the first dataset and in-
creasing for the second.

Next, I consider estimation of the treatment effect along the income frontier.
As mentioned earlier, Kane’s income threshold regressions are incomparable to
his GPA threshold regressions. Nonetheless, I estimate probit regressions for the
income threshold on the simulated datasets in the way that most closely follows
his approach (i.e. with the same specification, except without other covariates,
and using the 1998 subsample). The regression output and plots of the MDRD
treatment function estimates are shown below.36

36Strictly speaking, the blue line in the plot should not be constant in X1 because Kane’s
probit regression at the income threshold includes linear and quadratic terms in X1. The
constant blue line represents the marginal effect of crossing the income threshold on the
probability of entering college when all the other covariates (including X1 and X2

1 ) are fixed
at their mean. Hence, the blue line in a “correct” plot should be a non-constant function
of X1. Such a plot is shown in the appendix, where it is clear from the output that the
varying treatment effect predicted using the probit model is still relatively constant, and
in fact, performs slightly worse. Since the goal is to compare the TPRS (and local linear)
estimate to the best benchmark of the probit regression, none of the results in this paper will
be overstated by presenting a treatment effect for Kane’s probit model that is better than
it actually is. Hence, for simplicity sake (since standard errors for the marginal probit effect
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Figure 16: The thick black line in these plots represents the true treatment
effect at the GPA threshold for the simulated data. The blue line is the MDRD
estimate using TPRS, the red line is the probit estimate using Kane’s approach
and the dark green line is the local linear estimate with bandwidth selection via
LM CV using δ = 0.05. The shaded region represents the 95 percent conserva-
tive Bayesian confidence intervals for the TPRS point estimates of the treatment
function.
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Figure 17: The thick black line in these plots represents the true treatment
effect at the income threshold for the simulated data. The blue line is the
MDRD estimate using TPRS, the red line is the probit estimate using Kane’s
approach and the dark green line is the local linear estimate with bandwidth
selection via LM CV using δ = 0.05. The shaded region represents the 95 percent
conservative Bayesian confidence intervals for the TPRS point estimates of the
treatment function.
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Table 2: Probit Regression for Income Threshold

Dependent variable:

College Going

Kane’s Data Simulated Data Simulated Data
(Constant Treat) (Non-Constant Treat)

I[X2 ≥ 0] 0.031∗ −0.004 0.010
(0.018) (0.027) (0.024)

Observations 8,410 4,760 4,760
Order of Polynomial 4 4 4
in Income
Order of Polynomial 2 2 2
in GPA
Other Covariates Yes No No
Included
Year Used for Sample 1998 and 1999 1998 1998

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

In the absence of notable periodic behavior in the DGP near the income
threshold, the TPRS estimate significantly outperforms the probit and local
linear estimates on the income threshold for both simulated datasets. The
TPRS estimates approximate the shapes of both treatment functions well and
exhibit low bias. As before, the 95 percent CI for the TPRS estimate for the
non-constant treatment data includes zero at lower values of X1 and excludes
zero for larger values, which is in line with the increasing nature of the true
treatment function.

By contrast, the probit estimate is badly biased – the estimate has the
opposite sign in the constant treatment case, and is close to zero (with a p-
value of 0.69) for the other simulated dataset.

The local linear estimate, while not as biased as the probit regression, still
has a higher bias than the TPRS estimate. Furthermore, the plots once again
show that the local linear estimates (which slope downwards for both datasets)
are completely uninformative of the shape of the true treatment function.

5.5 Performance of Local Linear Regression Estimates

The previous subsection made clear that local linear regression estimates on the
simulated datasets tended to be biased and failed to capture the shape of the

in probability at arbitrary covariate values are not easy to calculate), the rest of this paper
treats the probit estimate at the income threshold as being constant in X1.
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true treatment function. This subsection investigates the causes of this poor
performance.

As mentioned earlier in this paper, the primary issue with estimation via
local linear regression is the selection of an appropriate bandwidth. The ap-
proach developed earlier in this paper for bandwidth selection requires a choice
of δ which controls the amount of the data (close to the treatment frontiers)
that is to be used for bandwidth selection. However, it was noted that there is
no straightforward and objective way to determine a suitable value of δ. The
following tables show the optimal bandwidths chosen when different values of δ
are used.

Table 3: Optimal Bandwidth Choice for Different Values of δ (Simulated Data
with Constant Treatment Effect)

δ h1 h2

0.05 0.25 50
0.10 0.45 50
0.25 0.45 50
0.50 0.10 50
1.00 0.50 50

Table 4: Optimal Bandwidth Choice for Different Values of δ (Simulated Data
with Non-Constant Treatment Effect)

δ h1 h2

0.05 0.25 50
0.10 0.45 50
0.25 0.45 50
0.50 0.10 50
1.00 0.50 50

These tables show that the bandwidth choice varies with the value of δ. In
particular, while the bandwidth chosen for X2 stays constant at 50, the band-
width chosen for X1 varies from 0.1 to 0.5. The histograms for the simulated
assignment variables presented earlier put these numbers in context – X1 ranges
from -0.65 to 0.45 (with first and third quartiles of -0.25 and 0.25 respectively),
while X2 ranges from -100 to 33 (with first and third quartiles of -20.2 and 22.6
respectively). Hence, the bandwidths chosen for X1 under different δ’s vary from
a relatively small bandwidth to an extremely large one. On the other hand, the
bandwidth chosen for X2 covers most of its range, which may be reasonable
considering that the DGP is “approximately linear”.

This exercise also revealed that CV estimates of the loss function (MSE) are
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relatively flat, which was the basis for a criticism leveled against CV methods
by LM (2005), mentioned in the previous section. As an example, for the
simulated dataset with non-constant treatment effect, the MSE estimates (for
the 100 bandwidths considered) from my modified CV procedure with δ = 0.05
had a minimum of 0.1341, with first, second and third quartiles of 0.1381, 0.1441
and 0.1670 respectively.

Still, this may not be a serious issue if these different bandwidths result in
similar estimates. To determine whether this is the case, regression tables for
the local linear regressions with bandwidths selected using different values of δ,
as well as plots of the estimated treatment effect functions are shown below.

The regression tables and plots show that the estimated treatment effect
functions are fairly similar for bandwidths chosen using different values of δ.
This would have been a good sign, if not for the fact that all of these estimates
perform poorly when compared to the true treatment effects underlying the
DGPs, especially for the data with non-constant treatment effect.

In particular, the estimated coefficients for the slopes of the estimated treat-
ment effect functions (β̂5 and β̂6) for the dataset with non-constant treatment
effect are all negative (although they are statistically insignificant at the 10
percent level), in direct contradiction to the true treatment effect, which has
a positive slope. Furthermore, the true treatment effect at the origin in this
dataset, i.e. τ1(0) and τ2(0), given by β1, is zero, but the local linear estimates
for β1 are all positive and statistically significant at the 5 percent level.

Given that the bandwidth selection procedure considered a relatively com-
prehensive grid of potential bandwidth values, it is unlikely that the poor per-
formance of the local linear regression method with bandwidth selection via
modified CV was caused by poor implementation alone.

In light of the poor results for MDRD estimation via local linear regres-
sion, the rest of this paper focuses on the TPRS estimation method, which has
superior performance and is far less computationally expensive37.

5.6 Performance of TPRS Estimate when Assignment Vari-
ables have Discrete Support

A criticism of the IK bandwidth choice algorithm for local linear regression
in conventional RD is that the algorithm’s asymptotic properties are unknown
when assignment variables have discrete support. This same argument was
made against extending the IK bandwidth choice algorithm to MRD in Papay
et al. (2011a). Yet, one may also question whether the performance of MRD
estimation using TPRS deteriorates when assignment variables have discrete
support. While this paper does not offer theoretical results on this question, I
investigate the issue empirically using the simulated datasets.

In fact, the exercise so far already has an assignment variable with discrete
support – GPA, which is reported in hundredths. Yet, there are many possible

37While it may take more than three hours to run the CV bandwidth selection procedure
for local linear regression using δ = 1, a TPRS estimate may be obtained within five seconds.
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Table 5: Local Linear Regressions Resulting from Different Values of δ (Simu-
lated Data with Constant Treatment Effect)

Dependent variable:

College Going

(δ = 0.05) (δ = 0.10) (δ = 0.25) (δ = 0.50) (δ = 1)

β0 0.824∗∗∗ 0.826∗∗∗ 0.826∗∗∗ 0.819∗∗∗ 0.824∗∗∗

(0.005) (0.005) (0.005) (0.006) (0.005)

β1 0.052∗∗ 0.050∗∗ 0.050∗∗ 0.057∗∗∗ 0.052∗∗

(0.022) (0.022) (0.022) (0.022) (0.022)

β2 0.127∗∗∗ 0.144∗∗∗ 0.144∗∗∗ 0.168∗∗∗ 0.138∗∗∗

(0.028) (0.019) (0.019) (0.039) (0.018)

β3 −0.0002 −0.0003 −0.0003 −0.0001 −0.0003
(0.0002) (0.0002) (0.0002) (0.0003) (0.0002)

β4 −0.0003 0.001 0.001 0.0004 0.0005
(0.001) (0.001) (0.001) (0.002) (0.001)

β5 −0.119 −0.137 −0.137 −0.160∗ −0.130
(0.084) (0.084) (0.084) (0.086) (0.084)

β6 −0.001 −0.001 −0.001 −0.001 −0.001
(0.001) (0.001) (0.001) (0.001) (0.001)

β7 0.005 0.003 0.003 0.004 0.004
(0.004) (0.004) (0.004) (0.004) (0.004)

Obs. 13,581 16,091 16,091 11,282 16,619
R2 0.007 0.012 0.012 0.005 0.012

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Treatment effect estimates along the GPA and income frontiers are respectively
given by β̂1 + β̂6X2 and β̂1 + β̂5X1. The treatment coefficients implied by the
DGP with constant treatment effect are β1 = 0.025, β5 = 0 and β6 = 0.
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Table 6: Local Linear Regressions Resulting from Different Values of δ (Simu-
lated Data with Non-Constant Treatment Effect)

Dependent variable:

College Going

(δ = 0.05) (δ = 0.10) (δ = 0.25) (δ = 0.50) (δ = 1)

β0 0.824∗∗∗ 0.826∗∗∗ 0.826∗∗∗ 0.819∗∗∗ 0.824∗∗∗

(0.005) (0.005) (0.005) (0.006) (0.005)

β1 0.053∗∗∗ 0.051∗∗ 0.051∗∗ 0.058∗∗∗ 0.053∗∗

(0.020) (0.021) (0.021) (0.020) (0.021)

β2 0.127∗∗∗ 0.144∗∗∗ 0.144∗∗∗ 0.168∗∗∗ 0.138∗∗∗

(0.026) (0.018) (0.018) (0.036) (0.017)

β3 −0.0002 −0.0003 −0.0003 −0.0001 −0.0003
(0.0002) (0.0002) (0.0002) (0.0003) (0.0002)

β4 −0.0003 0.001 0.001 0.0004 0.0005
(0.001) (0.001) (0.001) (0.001) (0.001)

β5 −0.011 −0.028 −0.028 −0.052 −0.022
(0.079) (0.080) (0.080) (0.080) (0.080)

β6 −0.001 −0.001 −0.001 −0.001 −0.001
(0.001) (0.001) (0.001) (0.001) (0.001)

β7 0.006 0.004 0.004 0.005 0.005
(0.004) (0.004) (0.004) (0.004) (0.004)

Obs. 13,581 16,091 16,091 11,282 16,619
R2 0.020 0.025 0.025 0.018 0.026

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Treatment effect estimates along the GPA and income frontiers are respectively
given by β̂1 + β̂6X2 and β̂1 + β̂5X1. The DGP with non-constant treatment
effect implies β1 = 0. The coefficients β5 and β6 are unable to capture the
non-linear treatment effect perfectly. Nonetheless, specification error aside, one
would expect β5 and β6 to be positive, given that the treatment effect functions
on both treatment frontiers are increasing.
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Figure 18: Local linear regression estimates of the MDRD treatment effect
function at the GPA threshold using various values of δ. Note that the red line
is hidden behind the dark green line due to identical bandwidth choice.
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Figure 19: Local linear regression estimates of the MDRD treatment effect
function at the income threshold using various values of δ. Note that the red
line is hidden behind the dark green line due to identical bandwidth choice.
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values for GPA in the sample used for analysis (111 in total). This large number
of possible values makes GPA “similar in spirit” to a continuous variable. On the
other hand, income – which the exercise has treated as a continuous variable so
far – is often reported in round numbers, such as in $1,000’s. In this subsection,
I generate simulated datasets with income that is discretized to be in $1,000’s,
then estimate probit and TPRS treatment effects using this new data. The
majority of observations take a relatively small number of (discretized) income
values. For instance, Kane’s regression for the income threshold uses only the
subset of applicants with parental income within $20,000 of the threshold, which
amounts to 41 possible income values.

Reassuringly, the figures below show that the estimated treatment effect
functions using TPRS remain very similar even when income is discretized in
$1,000’s. The regression tables below show that the probit estimates are also
hardly affected. In other words, all of the comments above about the perfor-
mance of MDRD estimation using TPRS (relative to Kane’s probit method)
when income was a continuous variable still hold when income is discretized.
Most importantly, this suggests that the performance of TPRS estimates is not
adversely affected by assignment variables with discrete support.

Table 7: Probit Regressions using Simulated Data for GPA Threshold (with
and without discretized income)

Dependent variable:

College Going

I[X1 ≥ 0] 0.033∗ 0.033∗ 0.030∗ 0.030∗

(0.017) (0.017) (0.016) (0.016)

Observations 11,750 11,750 11,750 11,750
Order of Polynomial 3 3 3 3
in GPA
Discretized Income No Yes No Yes
Constant Treatment Yes Yes No No
Effect

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

5.7 Sensitivity of TPRS Estimates to Bandwidth Choice

One of the main advantages of using TPRS for estimation over local linear
regressions is that one does not need to estimate an optimal bandwidth for
TPRS. Instead, one can simply use most of the data for TPRS estimation (which
is equivalent to choosing very large bandwidth), since data that is “too far” from
the frontiers will not, in theory, significantly affect the treatment effect estimate
due to TPRS being a local estimator. In this subsection, I reestimate the TPRS
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Figure 20: The blue and red lines represent the MDRD treatment effect esti-
mates at the GPA threshold using TPRS for the dataset with discretized income,
and with continuous income respectively.
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Figure 21: The blue and red lines represent the MDRD treatment effect es-
timates at the income threshold using TPRS for the dataset with discretized
income, and with continuous income respectively.
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Table 8: Probit Regressions using Simulated Data for Income Threshold (with
and without discretized income)

Dependent variable:

College Going

I[X2 ≥ 0] −0.004 −0.005 0.010 0.009
(0.027) (0.027) (0.024) (0.024)

Observations 4,760 4,760 4,760 4,760
Discretized Income No Yes No Yes
Constant Treatment Yes Yes No No

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

treatment functions using various relatively large (non-symmetric) bandwidths
to check how sensitive the treatment effect estimates are to this choice.

The results presented in the rest of this paper uses all the data, which cor-
responds to “Bandwidth 1” in this subsection. As the histograms of the assign-
ment variables in an earlier subsection show, the distribution of X2 values has
a long left tail that extends far below zero (corresponding to applicants with
parental incomes too high for CalGrant eligibility), and the distribution of X1

values also has a left tail (albeit a shorter one). Hence, I select the other band-
widths in this subsection by truncating the left tail of X1 and/or X2, so that
the ranges of X1 and/or X2 values are centered at zero. Specifically, the chosen
bandwidths are:

Bandwidth 1: 20,180 observations withX1 ∈ [−0.65, 0.45] andX2 ∈ [−100, 35];

Bandwidth 2: 16,805 observations withX1 ∈ [−0.65, 0.45] andX2 ∈ [−100, 35];

Bandwidth 3: 18,030 observations withX1 ∈ [−0.45, 0.45] andX2 ∈ [−35, 35];

Bandwidth 4: 15,027 observations withX1 ∈ [−0.45, 0.45] andX2 ∈ [−35, 35].

Encouragingly, the plots below show that the estimated treatment effects
for these bandwidths are relatively similar, implying that bandwidth choice
is of second order concern when using TPRS for estimation (as long as it is
chosen to be large enough). This is in contrast to local linear regression, where
bandwidth selection is a critical yet unresolved issue.

5.8 Results in Repeated Simulations

The simulation exercise so far used two simulated datasets generated with ap-
propriate distributions for the covariates and suitable DGPs, to approximate
the true dataset for Kane’s paper. While the TPRS approach outperforms the
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Figure 22: TPRS estimates of the treatment effect function at the GPA thresh-
old are plotted for various choices of bandwidth. The true effect is shown in
black.
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Figure 23: TPRS estimates of the treatment effect function at the income thresh-
old are plotted for various choices of bandwidth. The true effect is shown in
black.
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probit regression on these simulated datasets, it is possible that the TPRS esti-
mate just happened to perform well on these particular realizations of the data.
In this subsection, I assess the performance of the TPRS estimation approach by
repeatedly generating datasets (a total of 1,000 times) using the same covariate
distributions and DGPs as before, and obtaining TPRS and probit estimates
for each realization of the data.38

5.8.1 Mean Squared Integrated Error of the TPRS and Probit Es-
timates

A metric is needed to compare the TPRS and probit estimates of the treatment
function. MSE is a common measure for comparing the accuracies of scalar
estimators when the true parameter value is known. However, the estimate
in this case is a function rather than a scalar. Hence, rather than reporting
the MSEs for a grid of points, I report the Mean Integrated Squared Error
(MISE), which provides a more convenient summary of the global accuracy of
the function estimate. In this example, given the true treatment function τ1 (or
τ2) and its estimate τ̂1 (or τ̂2), the MISE is defined by:39

(21) MISE(τk, τ̂k) ≡
∫
Fk

(τ̂k − τk)2dxk′ , where k ∪ k
′

= {1, 2}.

The following table shows that on average the TPRS estimate far outper-
forms the probit estimate in terms of MISE. The four cases considered cor-
respond to the estimates for the two different DGPs (constant/non-constant
treatment effect) along the two frontiers (GPA and income). In all four cases,
the MISE for the TPRS estimate is smaller than that for the probit estimate
(in fact, the TPRS MISE is 2.4 to 3.3 times smaller along the income frontier).

5.8.2 Performance of the TPRS Bayesian Confidence Intervals

In addition to comparing the accuracies of the TPRS and probit estimates, the
repeated simulations also allow me to assess the performance of the conservative
Bayesian confidence intervals. One may recall from the previous section that
provided the error term has a normal distribution, the coefficient estimates for
the basis functions of the TPRS (and hence, the point estimates of the treatment
effect) are normally distributed. However, this simulation exercise is based on

38I did not perform this exercise for the local linear estimate due to the computational
expense of the bandwidth selection procedure. For instance, selecting a bandwidth using
δ = 1 takes more than three hours, which makes repeating the procedure 1,000 times on a
single machine intractable.

39For computational reasons, I approximate this integral using the value of the integrand
at the left endpoint for a grid of values along the frontier (31 values from 0 to 30 for F1 and
41 values from 0 to 0.40 for F2). While this integral approximation is rather crude, it would
not be badly biased unless the integrand is systematically increasing or decreasing over the
range of the frontier (which does not appear to be the case). Moreover, the focus here is on
the difference in MISE between the TPRS and probit estimators, rather than the exact value
of the MISE. It turns out that the difference between the MISE of these two estimators is
large enough to alleviate such concerns.
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Table 9: Comparison of MISE’s for TPRS and Probit Estimates

Treatment Frontier TPRS MISE Probit MISE Ratio of MISE’s
(Probit/TPRS)

Constant GPA 0.006 0.009 1.421
Non-Constant GPA 0.009 0.010 1.106

Constant Income 0.0001 0.0003 2.431
Non-Constant Income 0.0001 0.0005 3.262

a probability model where the dichotomous outcome variable can only take the
values of zero or one, which implies that the assumption of normally distributed
error terms is violated. Hence, normality of the treatment point estimates is
only an approximation based on large sample theory. The large number of TPRS
estimates and their Bayesian CIs will shed light on whether this approximation
is a valid one.

There are two questions to answer concerning the distributions of the point
estimates. The first and arguably more important concern is whether the
Bayesian 95 percent CIs cover the true function value at least 95 percent of
the time. The second is whether the distributions of the point estimates are
approximately normal.

The following plots show the coverage rates for the TPRS and probit CIs in
the 1,000 simulations under the two DGPs (as before, the conservative Bayesian
CIs are used for TPRS). For the simulated data with constant treatment effect,
the TPRS CIs have very high coverage rates (about 98 to 99 percent) along
the entire ranges of both frontiers. The TPRS CIs tend to have lower coverage
rates near the origin for the simulated data with non-constant treatment effect,
although moving away from the origin, the coverage rates are typically at least
95 percent. Regardless of the frontier or the dataset in question, the TPRS CIs
tend to have higher coverage rates on average than the probit CIs.

To address the second concern, histograms of several point estimates are
shown below. These empirical distributions seem approximately normal, in
that they are unimodal and are not systematically skewed in either direction.

5.8.3 Shape of the TPRS Treatment Effect Estimate

The final issue explored in this subsection concerns whether the shape of the
average TPRS function estimate is similar to that of the true treatment function.
To this end, I plot the means of the TPRS point estimates along a grid of
points on each frontier (for both the DGPs with constant and non-constant
treatments). I also overlay the true treatment functions in these graphs for
comparison.

The graphs below show that the TPRS estimates at the income threshold
tend to approximate the shape of the true function quite well, while TPRS es-
timates at the GPA frontier show some sinusoidal behavior. This is an artifact
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Figure 25: The various lines show the empirical coverage over 1,000 simulations
of the two estimators using the two different simulated datasets for different
values of X1 along the income frontier. The black line shows the 95 percent
coverage level.
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Figure 26: Distribution of TPRS point estimates along the GPA frontier for the
simulated dataset with constant treatment effect.
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Figure 27: Distribution of TPRS point estimates along the income frontier for
the simulated dataset with constant treatment effect.
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Figure 28: Distribution of TPRS point estimates along the GPA frontier for the
simulated dataset with non-constant treatment effect.
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Figure 29: Distribution of TPRS point estimates along the income frontier for
the simulated dataset with non-constant treatment effect.

of the periodic behavior in the true DGPs along the GPA frontier that is im-
perfectly captured by the TPRS estimates (as mentioned several times earlier).
Nonetheless, if one abstracts from this oscillation about the trend, the general
shape of the TPRS estimate at the GPA threshold is also similar to that of the
true function.

6 Additional Considerations

6.1 Fuzzy MRD

Thus far, this paper has only considered sharp MRD, where treatment is com-
pletely determined by values of the assignment variables. Here, I discuss fuzzy
MRD and describe how the treatment effect function may be estimated, starting
with the case for dichotomous treatment. I abbreviate fuzzy MRD in general
as FMRD, with the dichotomous and multiple treatment cases respectively ab-
breviated as FMDRD and FMMRD.

6.1.1 FMDRD

Similar to conventional fuzzy RD, FMRD refers to situations where the jump
in probability of receiving treatment when crossing a threshold is less than one.
However, instead of a scalar threshold as in conventional RD, there are several
one-dimensional frontiers in FMRD. Complicating matters further, it is possible
for the FMRD on one frontier to be fuzzy even when the FMRD on another
frontier is sharp, or for the jump in treatment probability to be one on part of
a frontier and less than one on the rest of the same frontier. The following two
examples show how such situations may arise in reality.

To illustrate how the jump in probability may vary along a single frontier,
consider a state financial aid package where eligibility depends, without ex-
ceptions, on high school students having GPA and family income respectively
above and below their thresholds. However, not all eligible applicants apply.
Assuming the sample is the entire population of high school students (rather
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Figure 30: Mean TPRS estimates at the GPA threshold are shown in blue. The
black line represents the true treatment effect.
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Figure 31: Mean TPRS estimates at the income threshold are shown in blue.
The black line represents the true treatment effect.
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than just the applicants), and using whether one receives the aid package as
the treatment variable, this becomes a FMDRD problem. Now, the decision
of eligible applicants to apply (or not) may vary depending on his/her family
income. It is quite plausible that for students with family incomes far below
the income threshold, the aid package is extremely attractive, so that the jump
in probability at the GPA threshold is one for low values of income. On the
other hand, students with family income just below the income threshold may
be less influenced by the aid package, so the jump in probability at the GPA
threshold is less than one for higher values of income (that are still below the
income threshold).

This next example has the same basic setup, with eligibility for a finan-
cial aid package depending on GPA and family income. Now, suppose that
the family income threshold is very low and that the aid package can only be
used for public colleges. Assume further that all eligible students who barely
pass the GPA threshold apply, since the aid package is extremely attractive for
these students from very poor families (by definition of being below the income
threshold). Hence, the jump in treatment probability at the GPA threshold is
one. On the other hand, suppose that among the eligible students just below
the income threshold, some of the students with high GPAs (far above the GPA
threshold) do not apply because of scholarship offers they receive from private
colleges. This constitutes a case where the MDRD on one frontier (i.e. the
GPA threshold) is sharp, whereas the MDRD on another frontier (specifically,
the income threshold) is fuzzy.

In practice, one can get a sense of whether the FMRD is fuzzy along a
frontier by examining discontinuity plots created using the “slicing” approach
(described in section 3.1) with probability of receiving treatment on the vertical
axis.

Having discussed the basic concepts of FMDRD, I now define it more for-
mally. The following definition pertains to a FMDRD for the frontier F1 (the
definition of FMDRD for F2 is completely analogous). Assume that

lim
x1→0+

E[Wi|X1i = x1, X2i = x2]− lim
x1→0−

E[Wi|X1i = x1, X2i = x2] < 1

for some x2 ≥ 0, and

lim
x1→0+

E[Wi|X1i = x1, X2i = x2] 6= lim
x1→0−

E[Wi|X1i = x1, X2i = x2]

for all x2 ≥ 0.40 Then, denoting

f(x1, x2) ≡ E[Y |X1i = x1, X2i = x2],

p(x1, x2) ≡ E[W |X1i = x1, X2i = x2],

40One may relax this assumption by requiring it only for a subset of F1. However, should
one choose to do so, care must be taken in choosing the domain of definition for the treatment
function estimate to avoid division by zero.
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the FMDRD treatment effect function along F1 is defined as:

(22) τFuzzy1 (x2) ≡ limx1→0+ f(x1, x2)− limx1→0− f(x1, x2)

limx1→0+ p(x1, x2)− limx1→0− p(x1, x2)
for x2 ≥ 0.

TPRS estimates for the numerator and denominator can be obtained using
the approach outlined in section 4.3 (with ultimate outcome Y and treatment
status W as the outcome variables respectively).

To elaborate, I denote the TPRS fitted using observations in the non-negative
quadrant R1 with Y and W as the outcome variables respectively by f̂1(x1, x2)

and p̂1(x1, x2), and those fitted on R2 \ R1 by f̂0(x1, x2) and p̂0(x1, x2). This
allows the point estimate of the treatment effect at any point along the frontier
F1 to be written as:

(23) τ̂Fuzzy1 (x2) ≡ f̂1(0, x2)− f̂0(0, x2)

p̂1(0, x2)− p̂0(0, x2)
for x2 ≥ 0.

The point estimates for the numerator and denominator of the FMDRD
treatment functions have posterior Bayesian distributions that are (approxi-
mately) normal, as explained at the end of section 4. However, it is unlikely
that a useful theoretical approximation for the distribution of the FMDRD point
estimate can be found without knowing the exact distributions of the numera-
tor and denominator as well as their correlation. In particular, ratios of normal
random variables need not be well behaved.41

Hence, rather than deriving theoretical CIs for the FMDRD estimate, a more
practical approach may be to obtain CIs by bootstrapping. Unless the dataset is
huge, the computational burden is unlikely to be excessive – computing a MDRD
estimate for the simulated dataset in the previous section (which contains almost
20,000 observations) takes less than five seconds on a personal laptop. This
flexibility is the main reason TPRS is preferred over thin plate splines, since
bootstrapping with the latter would not be feasible even with moderately large
datasets due to its computational expense.

If the FMDRD is fuzzy on both frontiers, one can simply use the formula
above to obtain τ̂Fuzzy1 (x2), and compute τ̂Fuzzy2 (x1) similarly using the for-
mula:

(24) τ̂Fuzzy2 (x1) ≡ f̂1(x1, 0)− f̂0(x1, 0)

p̂1(x1, 0)− p̂0(x1, 0)
for x1 ≥ 0.

Point-wise CIs can then be obtained via bootstrap for both functions.
However, there is a choice to be made when the FMDRD is fuzzy on one

frontier (say F1) but sharp on the other (F2 in this case). τ̂Fuzzy1 (x2) should of
course be estimated using the FMDRD formula as before, with point-wise CIs
obtained by bootstrapping. On the other hand, one can either use τ̂Fuzzy2 (x1)

41For instance, the ratio of two independent standard normal random variables follows a
Cauchy distribution, which has undefined mean and variance.
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for estimation of the treatment effect function along F2, or τ̂Sharp2 (x1), which is
defined by:

(25) τ̂Sharp2 (x1) ≡ f̂1(x1, 0)− f̂0(x1, 0) for x1 ≥ 0.

The advantages of using τ̂Sharp2 (x1) are that this estimator has lower bias
if the FMDRD is truly sharp on the frontier F2, and Bayesian CIs can be
used. However, it will be the case that in general, τ̂Sharp2 (0) 6= τ̂Fuzzy1 (0) as

long as f̂1(0, 0) − f̂0(0, 0) 6= 0 and p̂1(0, 0) − p̂0(0, 0) 6= 1. By contrast, using

the fuzzy treatment effect estimates for both frontiers ensures that τ̂Fuzzy2 (0) =

τ̂Fuzzy1 (0). Moreover, obtaining bootstrapped CIs for τ̂Fuzzy2 (x1) imposes almost
no additional computational burden, since bootstrapping is already done for
τ̂Fuzzy1 (x2).42

6.1.2 FMMRD

Next, I show that with the exception of a slight complication, the procedure
for estimating FMMRD is essentially the same. Suppose that there are four
treatments conditions, roughly corresponding to each of the four quadrants of
R2, and consider for this example, estimation of the treatment function τ12(x2)
along F12, the non-negative x2-axis.

Most of the observations in Rk (k = 1, 2, 3, 4) consists of observations with
treatment k (i.e. satisfy Wki = 1). However, there may be observations in
R1 ∪ R2 that satisfy neither W1i = 1 nor W2i = 1. For this example, suppose
for concreteness that there are observations in R2 that receive treatment 3.43

Estimation of τ12(x2), which compares treatment 1 to treatment 2, may be
invalidated by observations that receive neither treatment. Therefore, only ob-
servations receiving treatments 1 or 2 should be used in estimating the treatment
effect τ12(x2). After discarding observations in R1 ∪ R2 with neither W1i = 1
nor W2i = 1, one may then use graphical analysis to decide whether to estimate
τSharp12 (x2) or τFuzzy12 (x2). Also, notice that in this example, the presence of
observations receiving treatment 3 in R2 suggests that the MMRD along the
frontier F23 may be a fuzzy one.

6.2 Inclusion of Baseline Covariates

In this subsection, the vector of assignment variables is denoted by X and the
vector of baseline covariates by Z. If the MRD assumptions are valid, one would
expect the density of Z conditional on X, fZ|X(z|x), to be continuous at the

42To see this, note that during each bootstrap replication b to obtain the bootstrap estimate

τ̂Fuzzy
1b (x2) of τ1(x2), the functions f̂1b, f̂0b, p̂1b and p̂0b are fitted. Therefore, the only

additional calculation required to obtain a bootstrap estimate τ̂Fuzzy
2b (x1) of τ2(x1) is simply

to compute the formula for τ̂Fuzzy
2b (x1) using the functions f̂1b, f̂0b, p̂1b and p̂0b, which have

already been fit.
43This situation can only arise in FMMRD, since observations in FMDRD can only be in

the treatment or control group by definition.
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frontiers44. Assuming this holds, it follows that for X arbitrarily close to a
frontier, the baseline covariates Z are independent of the treatment W . Taking
the frontier F1 in a MDRD as an example, this implies that for x2 ≥ 0,

lim
x1→0+

E[Y |X1i = x1, X2i = x2,Z = z]

− lim
x1→0−

E[Y |X1i = x1, X2i = x2,Z = z]

= lim
x1→0+

E[Y |X1i = x1, X2i = x2]− lim
x1→0−

E[Y |X1i = x1, X2i = x2].

So, provided the MRD assumptions hold, the inclusion of additional co-
variates in the estimation equation for MRD should not change the estimated
function by much. Testing the sensitivity of MRD estimates to the inclusion of
baseline covariates can thus be used as an additional check on the validity of
the MRD design.

A useful feature of TPRS is that it can easily be incorporated into generalized
additive models. This provides a great deal of flexibility for how a user may wish
to include the baseline covariates in the model. For example, one can estimate

Yi = g1(Xi) + g2(Zi) + εi,

where g1 is the TPRS described in section 4, and g2 is a linear function of the
baseline covariates, or

Yi = g(Xi,Zi) + εi,

where g is a TPRS in X and Z, just to list two possibilities.
Another alternative, motivated by the discussion in Lee and Lemieux (2010),

is to “residualize” the outcome variable Y . Specifically, one first fits a model
with Y as a function of Z, then conducts MRD estimation using the residuals
from the first model as the outcome variable.

6.3 More than Two Assignment Variables

Although most of the discussion in this paper has focused on MRD with two
assignment variables, the estimation methods described still work in theory
for more than two assignment variables, provided appropriate adjustments are
made. First, with d assignment variables, the treatment frontiers are (d − 1)-
dimensional surfaces. Hence, the estimated treatment effect for a given frontier
is typically a function of d − 1 assignment variables. Second, the smoothness
penalty term Jmd that is used for fitting TPRS surfaces should satisfy 2m >
d+ 1.

However, estimation in higher-dimensional assignment variable space is not
without difficulties. Perhaps the most important of these is sparsity of data

44In fact, the diagnostic graphs that plot predetermined outcomes as functions of the as-
signment variables (discussed in section 3.2) are designed to check whether this condition
holds.
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resulting from the curse of dimensionality. The following toy example illustrates
this point.

Consider a MDRD with d assignment variables, and assume that values of
the assignment variables in the data is uniformly distributed in a d-dimensional
unit hypercube, with the cutoffs for each assignment variable at 0.5. Typically,
only data that is “close” to the boundary is truly relevant for MRD estimation45,
which I assume to be data that is at most a distance of b from the boundary.
Using the distance function induced by the L∞-norm (i.e. the max-norm) to be
generous46, the total fraction of data that is relevant in this toy example is given
by (0.5+b)d− (0.5−b)d. The fraction of data that is relevant for estimating the
treatment function along each frontier is approximately this quantity divided by
d, since there are d treatment frontiers in the d-dimensional assignment variable
space. The following table shows that the proportion of data that is relevant
for estimation decreases rapidly as the dimension d grows (using b = 0.1)47.

Table 10: Toy Example of Curse of Dimensionality

d Proportion of Data Relevant Proportion of Data Relevant
for Each Frontier

2 0.200 0.100
3 0.152 0.051
4 0.104 0.026
5 0.068 0.014
6 0.043 0.007
7 0.026 0.004
8 0.016 0.002
9 0.010 0.001
10 0.006 0.001

This suggests that when possible, one should try to reduce the dimension
of the assignment variable space, especially when several assignment variables
represent different measures of the “same” underlying characteristic (in a qual-
itative sense).

To elaborate, consider an example where eligibility for a college financial aid
package depends on family income being below a threshold, and the test score

45One should not confuse this point with the fact that TPRS estimation can be done using
nearly all the data. In particular, TPRS is a local estimator, so that data far from the
boundary has limited effect on estimates at the boundary. Hence, the decision to use most
of the data for TPRS estimation is simply to avoid the tedious and tricky task of optimal
bandwidth selection, rather than in the hope that data far from the boundary can improve
estimates at the boundary.

46Using any other distance function induced by Lp-norms for p < ∞ will lead to less data
being considered relevant for treatment effect estimation.

47For MMRD, a greater proportion of the data is closer to at least one frontier. However,
the number of frontiers separating the multiple treatment conditions is also greater, so the
problem is no less serious.
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on each of the three SAT components (reading, writing and language, and math)
being at least 600. It would be easy to set this up as a four-dimensional MDRD
problem, but this is undesirable due to the curse of dimensionality (which will
lead to imprecise estimates due to the sparsity of data close to each frontier
in the four-dimensional space). Instead, one can collapse the three SAT scores
(X2, X3, X4) into a single assignment variable X̃2 defined by

X̃2 = min{X2 − 600, X3 − 600, X4 − 600},

since they all represent academic performance. In particular, one is unlikely
to gain useful insights by distinguishing between say, the effect of crossing the
reading score threshold versus the effect of crossing the writing and language
score threshold. So in this context, essentially no information is lost using this
dimension reduction method, and the resulting treatment effect estimate is also
likely to be more precise, since a greater proportion of data will be close to the
treatment boundaries in the new two-dimensional assignment variable space.

However, one would need to make sure that the variables are scaled similarly
when using this approach. While this is not a problem for the SAT scores,
the inclusion of a GPA requirement will necessitate rescaling of variables before
using this dimension-reduction technique, since GPA will almost always be closer
to its cutoff than the SAT scores are from theirs.

6.4 Uncertainty over the Number of Treatments

Sometimes, it is not clear exactly what constitutes a treatment condition for a
particular MRD. For example, suppose the two assignment variables are reading
and math scores which determine whether a student is required to take summer
remediation classes for reading and/or math (depending on the respective test
scores). Defining the treatment as whether or not a student attends any summer
remediation results in a MDRD design, whereas distinguishing between types of
summer remediation leads to a MMRD design.

A practical way to deal with uncertainty over treatment definition is to first
estimate a MMRD (which defines a greater number of treatment conditions)
and check whether the point-wise CIs for estimated treatment effects along each
frontier typically contains zero. In the context of the example above, one may
examine the estimated treatment functions for the frontiers separating students
who failed one test, and students who failed both tests. If these estimated
treatment functions tend not to be significantly different from zero, then one
may consider reformulating the problem as a MDRD.

7 Conclusion

While MRD is a useful tool for a wide range of policy evaluations, the current
literature on this research design is limited. As such, there is little by way of
consensus on how to conduct analysis for MRD. This paper discusses the existing
research on MRD, and propose novel methods that address their shortcomings.
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In particular, this paper contains the first extensive discussion of graphical
methods for MRD. Graphical analysis is a critical component of conventional
RD, but has been largely neglected in the MRD literature thus far. I dis-
cuss the advantages of estimating flexible treatment effect functions over scalar
treatment effects, and provide numerous examples where the former may yield
valuable insights. This paper also generalizes an existing method for estimating
treatment effect functions using local linear regression, and proposes a separate
new method using thin plate regression splines (TPRS) that is easy to imple-
ment. Finally, through a simulation study based closely on real data, I show
that the estimation approach using TPRS consistently outperforms existing es-
timation methods on the simulated data.

The simulation results suggest that MRD treatment function estimation us-
ing TPRS holds promise. Here, I suggest two related issues that merit further
investigation. First, the theoretical properties of the TPRS estimation method
have not been developed in depth. For instance, this paper does not provide
formal results on its asymptotic convergence properties. Second, a compari-
son between MRD treatment effect functions estimated on a real dataset using
TPRS and local linear regression (with bandwidth chosen either via my gener-
alization of LM CV or a multidimensional analogue of the IK algorithm) may
yield additional insights.
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Appendix A Simulated Data with Correlated In-
come and GPA

The simulated dataset in the main text was generated under the assumption
that the assignment variables – high school GPA and parental income – were
uncorrelated. However, as Patterson and Mattern (2013) document, there is
a small but positive correlation between GPA and household income. In this
section, I generate simulated datasets similar to the ones in the main paper in
most respects, except that a small degree of positive correlation is introduced
between high school GPA and parental income. I then compute treatment effect
estimates using local linear regression (with δ = 0.05) and TPRS.

Since the values of the assignment variables in this new simulated dataset are
different, I modified the DGPs accordingly to ensure that Kane’s probit regres-
sion for the GPA threshold still produces similar results to the ones presented
in his paper. It turns out that with positively correlated assignment variables,
Kane’s probit regressions consistently overestimate the true treatment effect.
Hence, both the constant and non-constant treatment effect functions had to
be negative (at least over part of their domains of definition) to guarantee pro-
bit regression results similar to those in Kane’s paper. Regression tables for
the probit model and local linear regression, as well as plots of the estimated
MDRD treatment functions for the three estimation methods are shown below.

Table 11: Probit Regression for GPA Threshold for the Simulated Dataset with
Correlated Assignment Variables

Dependent variable:

College Going

Kane’s Data Simulated Data Simulated Data
(Constant Treat) (Non-Constant Treat)

I[X1 ≥ 0] 0.029∗ 0.032∗ 0.030∗

(0.015) (0.018) (0.016)

Observations 11,750 11,806 11,806
Order of Polynomial 3 3 3
in GPA

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

As mentioned above, the probit estimates for these datasets are seriously
biased upwards. On the other hand, the local linear approach performs far
better than with the datasets used in the main text. The local linear estimates
are less biased compared to the probit estimates, and have a positive slope
for the dataset with an increasing treatment effect. Moreover, the local linear
estimate for β5 is statistically significant at the 10 percent level for the dataset
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Table 12: Local Linear Regressions for Simulated Data with Correlated Assign-
ment Variables)

Dependent variable:

College Going

Constant Treat Non-Constant Treat

β0 0.818∗∗∗ 0.818∗∗∗

(0.007) (0.006)

β1 0.017 −0.006
(0.023) (0.021)

β2 0.088∗∗ 0.088∗∗

(0.040) (0.038)

β3 −0.001∗∗∗ −0.001∗∗∗

(0.0003) (0.0003)

β4 0.001 0.001
(0.002) (0.002)

β5 −0.027 0.141∗

(0.090) (0.084)

β6 −0.0002 0.001
(0.001) (0.001)

β7 0.002 0.002
(0.004) (0.004)

Observations 11,245 11,245
R2 0.004 0.015
Adjusted R2 0.003 0.015
Residual Std. Error (df = 11237) 0.366 0.341
F Statistic (df = 7; 11237) 6.053∗∗∗ 24.837∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The treatment effect estimates along the GPA and income frontiers are respec-
tively given by β̂1 + β̂6X2 and β̂1 + β̂5X1. The treatment coefficients implied by
the DGP with constant treatment effect are β1 = −0.005, β5 = 0 and β6 = 0.
For the DGP with non-constant treatment effect, β1 = −0.04, although the co-
efficients β5 and β6 are unable to capture the non-linear perfectly. Nonetheless,
specification error aside, one would expect β5 and β6 to be positive, given that
the treatment effect functions on both treatment frontiers are increasing.
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Figure 32: The assignment variables used in the dataset for this graph assume a
small positive correlation between high school GPA and parental income. The
thick black line in these plots represents the true treatment effect at the GPA
threshold for the simulated data. The blue line is the MDRD estimate using
TPRS, the red line is the probit estimate using Kane’s approach and the dark
green line is the local linear estimate with bandwidth selection via LM CV using
δ = 0.05. The shaded region represents the 95 percent conservative Bayesian
confidence intervals for the TPRS point estimates of the treatment function.
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Figure 33: The assignment variables used in the dataset for this graph assume a
small positive correlation between high school GPA and parental income. The
thick black line in these plots represents the true treatment effect at the income
threshold for the simulated data. The blue line is the MDRD estimate using
TPRS, the red line is the probit estimate using Kane’s approach and the dark
green line is the local linear estimate with bandwidth selection via LM CV using
δ = 0.05. The shaded region represents the 95 percent conservative Bayesian
confidence intervals for the TPRS point estimates of the treatment function.
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with non-constant treatment, which indicates (correctly) that there is statistical
evidence of a non-constant treatment effect at the income threshold.

Nonetheless, the TPRS approach still outperforms the local linear and pro-
bit methods. Its estimates have lower bias than the other two methods, and
are increasing for the dataset where the true treatment function is increasing.
Again, the true treatment functions fall well within the 95 percent point-wise
CIs of the TPRS estimates.

Appendix B Probit Marginal Effects

It was briefly mentioned in the main text that strictly speaking, the marginal
probit effect at the income threshold varies for different values of X1, since the
probit regression includes linear and quadratic terms in X1. Hence, the constant
probit effect shown in earlier plots is a simplification.

Yet, as the following graphs show, the actual marginal effects vary minimally
as a function of X1. Moreover, the varying marginal effects shown in these
graphs reveal that the probit regressions actually perform worse than implied
by the simplified plots. The probit marginal effect should ideally, not vary at
all for the simulated data with constant treatment effect. For the simulated
data with a non-constant treatment effect that is increasing in X1, the marginal
probit effect varies in the opposite direction, decreasing slightly with X1.

Therefore, the simplification that assumes a constant probit marginal ef-
fect understates how well the TPRS estimates perform relative to the probit
estimates.

Appendix C Sensitivity of the TPRS Estimate
to Choice of Basis Dimension

In section 4 of the paper, I note that the approximation of thin plate splines by
TPRS results in an additional tuning parameter k, which represents the basis
dimension used for fitting the TPRS. I also mentioned that as long as k is not
chosen to be too small, the exact value chosen is not critical, with Kim and Gu
(2004) suggesting 10n2/9 as a rule-of-thumb.

The estimated treatment effects on the simulated datasets for different choices
of k are shown below. Specifically, I considered the default choice provided by
the “gam” function in the R package “mgcv” (that is used throughout the pa-
per), k = 50, k = 100 and k = 200. The rule-of-thumb value of k for the
simulated dataset lies somewhere between 50 and 100. Reassuringly, the TPRS
estimates are almost identical for these different values of k, supporting the as-
sertion that the choice of basis dimension for TPRS is of second-order concern.
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Figure 34: The thick black line in these plots represents the true treatment effect
at the income threshold for the simulated data. The blue line represents the
constant marginal probit effect that was shown as a simplification throughout
the paper. The red line more accurately reflects the marginal probit effect,
which varies slightly with X1 because Kane’s probit regression equation at the
income threshold includes linear and quadratic terms in X1.
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Figure 35: TPRS estimates at the GPA threshold using different choices of basis
dimension k.
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Figure 36: TPRS estimates at the income threshold using different choices of
basis dimension k.
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Appendix D Additional Details on TPRS

This section of the appendix provides additional details on the approximation of
thin plate splines by TPRS. Purely for simplicity of exposition, I assume for this
discussion that no two observations have an identical combination of covariate
values.

Recall from section 4.3 that a thin plate spline f∗ is a solution to the following
minimization problem:

minimize
f

n∑
i=1

(yi − f(xi))
2 + λJmd(f),

where the definition Jmd can be found in the main text. As long as the restriction
2m > d is satisfied, the solution can be written as:

f∗(x) =

n∑
i=1

δ∗i ηmd(||x− xi||) +

M∑
j=1

α∗jφj(x),

where the orthogonality constraint T ′δ∗ = 0 is satisfied, with T defined by
Tij ≡ φj(xi). The functions M ≡

(
m+d−1

d

)
functions φj are linearly independent

polynomials that span the space of polynomials of degree less than m, and are
thus not penalized at all by the penalty term Jmd. These correspond to the
components of “zero wiggliness” mentioned in the main text. The function ηmd
is defined by:

ηmd(r) =


(−1)m+1+d/2

22m−1πd/2(m− 1)!(m− d/2)!
r2m−d log(r) if d is even

Γ(d/2−m)

22mπd/2(m− 1)!
r2m−d if d is odd.

Now, defining E by Eij ≡ ηmd(||xi − xj ||), the minimization problem that
defines the thin plate spline can alternatively be written as:

(*) minimize
δ,α

||y −Eδ − Tα||2 + λδ′Eδ s.t. T ′δ = 0.

Leaving the basis for the unpenalized functions untouched, the TPRS focuses
on truncating the basis for the δ parameter space in a way that perturbs the
minimization problem as little as possible.

To elaborate, let k be the basis dimension for the TPRS chosen by the user.
Instead of searching for the value of δ over the entire space Rn that (along with
α) minimizes the objective function and satisfies the orthogonality constraint,
the minimization problem that defines the TPRS only considers possible values
of δ within a k-dimensional subspace, W of Rn.

To make precise how the subspace W is chosen for TPRS (for a given value
of k), I introduce the following notation. Given a k-dimensional subspace W of
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Rn, let Γk be a n× k matrix of rank k with columns that form an orthonormal
basis for W . The TPRS minimization problem is thus

minimize
δk,α

||y −EΓkδk − Tα||2 + λδ′kΓ
′
kEΓkδk s.t. T ′Γkδk = 0,

where δ′k ∈ Rk.
In order to express this in a form closer to that of the minimization problem

for the thin plate spline, I define the n × n matrices Ẽk ≡ EΓkΓ
′
k and Êk ≡

ΓkΓ
′
kEΓkΓ

′
k. This allows me to write the TPRS minimization problem as,

(**) minimize
δ,α

||y − Ẽkδ − Tα||2 + λδ′Êkδ s.t. T ′δ = 0,

since δ ∈W if and only if Γkδk = δ for some δk ∈ Rk, by definition of W .
Now, the goal of TPRS is to choose W , or equivalently Γk, so that replacing

the matrix E in problem (∗) by Ẽk and Êk in problem (∗∗) perturbs problem
(∗) as little as possible. Unfortunately, there is no k-dimensional subspace that
minimizes the change in objective value for all possible values of δ. Hence,
TPRS instead chooses Γk to minimize the worst possible change in objective
value. In other words, Γk is the orthonormal basis matrix of rank k in Rn×k
that simultaneously minimizes

εk ≡ max
δ 6=0

{
||(E − Ẽk)δ||

||δ||

}
and ek ≡ max

δ 6=0

{
δ′(E − Êk)δ

||δ||2

}
,

where εk and ek correspond to the worst possible change in the least squares
and penalty terms respectively.

It turns out that the solution that simultaneously minimizes εk and ek is a
truncated eigenbasis of E. To elaborate, write the spectral decomposition of
E as E = UDU ′ where D is the diagonal matrix containing the eigenvalues
of E, arranged in decreasing order of magnitude, i.e. |Di,i| ≥ |Di+1,i+1| for
i = 1, ..., n−1.48 Then, the solution Γk is the first k columns of U , appropriately
scaled so that the columns are orthonormal. One may also easily verify that
this solution results in Ẽk = Êk.

For further details on TPRS, interested readers are encouraged to refer to
Wood (2003) and Wood (2006).

48This decomposition is possible because E is a real symmetric matrix by definition.
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