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Abstract

Food security has been suggested to be linked to the global climate, but past lit-

erature has only focused on the effects of local weather conditions, inadequate analogs

for global climate variables. I study the effects of the El Niño-Southern Oscillation

(ENSO), a dominant, warm-cool mode in the global climate that affects local climates

in so-called ENSO-teleconnected areas, on food security within countries and regions.

I find insignificant ENSO effects on food supply within countries, despite documented,

negative ENSO effects on agricultural production and macroeconomies, implying that

national food markets smooth these effects. However, ENSO significantly increases food

prices within countries, presumably due to the market actions required to stabilize food

supply. These rising food prices may be paralleled by increases in undernourishment in

ENSO-teleconnected regions and, to a lesser extent, in other regions, suggesting that

ENSO reduces nourishment of vulnerable households through price changes despite

stability in national food supply.
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1 Introduction

Food security has been suggested to be linked to the global climate since modern, globalized

food systems rest on agricultural production (that depends on sunlight and rainfall) around

the globe. The literature has focused on documenting the effects of local weather conditions

such as temperature and precipitation on food security (Misselhorn 2005; Demeke, Keil,

and Zeller 2011; Nyariki, Wiggins, and Imungi 2002). While local conditions are important

climatic factors, they are inadequate analogs for understanding how global climate conditions

affect food security. Global changes in the climate are inherently different from local weather

shocks: they may affect socioeconomic outcomes through channels beyond temperature and

precipitation, they may be correlated over large regions, and they may be (at least partially)

predictable (Hsiang, Meng, and Cane 2011). Studies of local weather conditions fail to

account for these effects.

In this paper, I study the effect on food security of a dominant mode in the global climate,

the El Niño-Southern Oscillation (ENSO). El Niño events are oceanic warming events in the

tropical Pacific Ocean (Timmermann et al. 2018; Wang et al. 2017) that are propagated by

atmospheric waves around the globe, affecting local climate conditions in so-called ENSO-

teleconnected areas (Chiang and Sobel 2002; Halpert and Ropelewski 1992; Trenberth and

Caron 2000; C. F. Ropelewski and M. S. Halpert 1987). La Niña events are oceanic cooling

events that impact the global climate in generally opposite ways to El Niño. ENSO is the

repeated shifting between EL Niño and La Niña phases with a period of three to seven years

and is the strongest and most predictable interannual fluctuation in the global climate (Chen

and Cane 2008).

Building off the research designs in Hsiang, Meng, and Cane (2011) and Hsiang and

Meng (2015), I match a continuous index of the global state of ENSO with panel data on

three food security outcomes—food supply per capita per day and Food Consumer Price

Index (Food CPI) at the country level, which together summarize the response of national

food markets, and prevalence of undernourishment at the regional level. I separate countries

1



and regions into a group that is ENSO-teleconnected and a group that is weakly affected

by ENSO and estimate average within-country or within-region ENSO effects on the three

outcomes separately for these two groups. I use a set of regression specifications that allow

for potentially nonlinear ENSO effects.

Looking first at national food markets, I find small and insignificant ENSO effects on

food supply per capita per day in both ENSO-teleconnected and weakly affected countries.

Compared with documented, mostly negative El Niño effects on agricultural production

(Iizumi et al. 2014; Hsiang and Meng 2015) and macroeconomies (Cashin, Mohaddes, and

Raissi 2017; Smith and Ubilava 2017) in ENSO-teleconnected countries, the stability of food

supply implies that food markets are able to quite successfully smooth these ENSO effects

at the country-year level. However, I also find that for ENSO-teleconnected countries, El

Niño years and weak La Niña years increase Food CPI by 0 to 4% of 2010 prices, while

strong La Niña years decrease Food CPI by 5% of 2010 prices, on average. In weakly

affected countries, El Niño years and weak La Niña years increase Food CPI by 1 to 6% of

2010 prices, and strong La Niña years decrease Food CPI by 1% of 2010 prices, on average.

These significant effects on food prices suggest that the market actions necessary to keep

food supply stable are associated with changing costs of procuring food. Furthermore, the

parallel effects observed in the two country groups imply that these food price effects may

spillover from ENSO-teleconnected to weakly affected countries.

Turning to undernourishment, I find that in ENSO-teleconnected regions, El Niño years

and weak La Niña years may increase prevalence of undernourishment by 0.2 to 0.8pp, while

strong La Niña years reduce it by 0.9pp, on average. In weakly affected regions, El Niño

years increase prevalence of undernourishment by 0.1 to 0.3pp, and La Niña years decrease

it by 0.1 to 0.2pp, on average. This suggests that the observed stability in food supply belies

significant food losses for certain vulnerable households and that rising food prices play a role

in this ENSO-driven undernourishment, and more so for ENSO-teleconnected regions than

for weakly affected ones. Taken together, the results show that, on average, ENSO-driven
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instabilities in food security look not like massive food shortages but rather like food price

fluctuations that only affect the nourishment of vulnerable households. This effect is more

pronounced in ENSO-teleconnected areas.

The Food and Agricultural Organization (FAO) defines food security as “a situation that

exists when all people, at all times, have physical, social and economic access to sufficient,

safe and nutritious food that meets their dietary needs and food preferences for an active and

healthy life” (FAO, IFAD, UNICEF, WFP and WHO 2019). Four sequential dimensions of

food security follow from this definition: food availability, access, utilization, and the stability

of the previous three (Pinstrup-Andersen 2009). This study therefore identifies ENSO to be

a significant factor in the stability of food access but not food availability, echoing the recent

focus in the food security literature on food access over food availability.

This paper contributes to the literature on climatic causes of food insecurity. Qualitative

and quantitative literature have linked local weather conditions with household food security

(Misselhorn 2005; Demeke, Keil, and Zeller 2011; Nyariki, Wiggins, and Imungi 2002). This

study complements existing studies on local weather shocks by identifying ENSO, a global

climatic variable, as another climatic determinant of food insecurity, a linkage which to my

knowledge has not been previously quantified. It also documents climate as a factor for food

security at larger macro levels.

This paper also contributes to the large literature on the effects of ENSO on various

socioeconomic outcomes around the globe. ENSO has been found to affect agricultural

yields and production (Iizumi et al. 2014; Hsiang and Meng 2015), macroeconomic variables

(Cashin, Mohaddes, and Raissi 2017; Smith and Ubilava 2017; Brunner 2002), human dis-

eases (Kovats et al. 2003; Hales, Edwards, and Kovats 2003; Patz et al. 2005), and civil

conflict (Hsiang, Meng, and Cane 2011) throughout the globe. This study extends the

literature on global ENSO effects to food security outcomes.

The paper proceeds as follows. Section 2 describes ENSO and how it may affect global

food security. Section 3 summarizes the data on ENSO and the three food security outcomes
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and describes the analysis methodology. Section 4 summarizes the responses of national

food markets using the results for the food supply and food prices outcomes and provides

discussion. Section 5 turns to the results for the undernourishment outcome and discusses.

Section 6 concludes.

2 The El Niño-Southern Oscillation

El Niño climate phenomena are oceanic warming events that occur in the tropical Pacific

Ocean and consist of an increase in sea surface temperature (SST) and a weakening of

equatorial trade winds (Timmermann et al. 2018; Wang et al. 2017). This warming generates

atmospheric waves which propagate the warming around the globe and affect local climate

conditions in so-called ENSO-teleconnected areas: generally, the tropics (Chiang and Sobel

2002). La Niña phenomena are oceanic cooling events in the tropical Pacific Ocean that

impact the global climate in generally opposite ways to El Niño. The repeated shifting

between El Niño and La Niña phases is known as the El Niño-Southern Oscillation (ENSO)

and has a period of three to seven years. It is the strongest and most predictable source of

interannual fluctuation in the global climate.

ENSO affects local temperature, precipitation, and tropical storms throughout the world

(Halpert and Ropelewski 1992; Trenberth and Caron 2000; C. F. Ropelewski and M. S.

Halpert 1987; Chester F. Ropelewski and Michael S. Halpert 1996; Camargo and Sobel 2005;

Donnelly and Woodruff 2007). Generally, El Niño years increase temperature and decrease

rainfall in ENSO-teleconnected areas and have opposite but weaker effects in weakly affected

areas (Hsiang and Meng 2015). In turn, increased local temperature and decreased local pre-

cipitation have been found to have negative effects on household food security (Misselhorn

2005; Demeke, Keil, and Zeller 2011; Nyariki, Wiggins, and Imungi 2002). Thus, it is plau-

sible that El Niño is linked with decreased household food security in ENSO-teleconnected

areas.
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This proposed linkage may have several channels. First, ENSO may affect the supply

side of food markets. El Niño years have been found to have mostly negative impacts on

agricultural yields and production in ENSO-teleconnected areas and weaker, mostly positive

impacts in weakly affected areas (Hsiang and Meng 2015; Iizumi et al. 2014). Depressed

agricultural yields and production may translate into reduced food supplies or increased

food prices for households.

Second, ENSO may also impact the demand side of food markets. El Niño events have

been found to have mixed but mostly negative effects on GDP growth (and thus household

incomes and unemployment) in ENSO-teleconnected countries, with weaker, mixed effects in

weakly affected countries as well as inflationary effects on world commodity prices (Cashin,

Mohaddes, and Raissi 2017; Smith and Ubilava 2017; Brunner 2002). In turn, decreased

household incomes and increased unemployment and price levels have been found to decrease

food security by intensifying household budget constraints and trade-offs to purchasing food

(Loopstra et al. 2016; Bacon et al. 2017; Verpoorten et al. 2013).

El Niño has even been found to exacerbate human diseases (Kovats et al. 2003; Hales,

Edwards, and Kovats 2003; Patz et al. 2005) and civil conflict in ENSO-teleconnected coun-

tries (Hsiang, Meng, and Cane 2011). Any of these global ENSO effects may be channels

through which El Niño reduces food security in ENSO-teleconnected areas, though the main

channels are expected to be through negative supply-side effects on agricultural production

and negative demand-side effects on macroeconomies due to increased local temperature and

decreased local precipitation.

3 Data and Methodology

3.1 Measuring ENSO

The global state of ENSO can be indexed by various climatic variables that reflect physical

mechanisms of the phenomenon (Timmermann et al. 2018; Wang et al. 2017). In this study,
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model by including linear time trends and an additive constant to all
years after 1989 (inclusive), a common technique7 to account formean
shifts in ACR after the end of the ColdWar (Table 1, rows 1–3). Using
a non-parametric regression, we find that ACR in the teleconnected
group is most responsive to strong ENSO events and is less affected by
smaller deviations from the neutral state (Fig. 2b).
In the teleconnected group, ACR is 3% in the La Niña state and rises

to 6% in the El Niño state, whereas ACR in the weakly affected group
remains at 2% for all ENSO states (Fig. 2b). This indicates that ENSO
may have affected one-fifth (21%) of all civil conflicts during this
period (see Methods).
Because ENSO events occur after the April/May ‘spring barrier’10

(Fig. 1b), we expect conflicts triggered by ENSO to occur in the later
part of the calendar year. Figure 2c, based on the subset of conflict data
available at monthly resolution, shows the within-year distributions of
conflict onsets for the teleconnected group in El Niño and La Niña
years. The distributions of conflicts are similar early in the year, with
substantial differences appearingonly after ENSOevents are underway.
The correlation we observe between ACR and NINO3 is robust to

the battery of statistical models advanced by previous studies3,5–7 (Sup-
plementary Methods). To ensure the entrance of new countries into
the sample do not drive our result, we restrict our sample to the post-
colonial period5 (Table 1, row 4) and estimate a country-level linear
probability model5,7 (row 5). We limit the sample to exclude African
countries (row 6) and find that the correlation is not driven exclusively
by Africa3,5,7. Further, we find that nonlinear probability models (Sup-
plementary Fig. 8), count models (Supplementary Fig. 9) and survival
models (Supplementary Table 5) produce indistinguishable results.
We find the relationship persists when alternative ENSO indices are
used (Supplementary Table 6). We estimate dynamic-panel and first-
difference models (Supplementary Table 7) and find no evidence that
patterns of serial correlation in either variable drive our results. We
expand our sample to include several influential outlying observa-
tions (1946, 1948 and 1989, see Supplementary Fig. 10) and find the

correlation persists (Supplementary Table 8). We remove country-
specific constants and trends from our longitudinal model7 and find
our estimates unchanged (Supplementary Table 9). When we include
controls for contemporaneous temperature and precipitation (Sup-
plementary Table 10) or for lagged income, political institutions and
population (Supplementary Table 11; see also Supplementary Fig. 11),
we continue to find a large and significant influence of ENSO on ACR.
We then estimate a model with all of the above controls, as well as
controls for gender balance, urbanization, age-structure, income
growth, agricultural reliance and cyclone disasters (Supplementary
Table 12 and Supplementary Fig. 12) and find that our results persist
across African and non-African countries. Finally, using standard
definitions17, we find that neither large (more than 1,000 battle deaths)
nor small (25, number of battle deaths , 1,000) conflicts dominate
our result (Supplementary Table 13). However, we find that increasing
the required peaceful period between conflicts17 reduces the correla-
tion between ENSO and large conflicts, indicating that many of the
large conflicts associated with ENSO are re-occurring conflicts (Sup-
plementary Table 13).
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Figure 2 | Conflict risk associated with ENSO. a, Time series of NINO3 and
ACR for the teleconnected group. b, Linear and non-parametric fit (n5 54,
weighted moving average, 90% confidence intervals shaded) of ACR against
NINO3. Time trends andmean shift after the endof the ColdWar are removed.
c, Solid (hatched) bars show total monthly conflict onsets in teleconnected
countries during one-third of years most El-Niño-like (La-Niña-like). Monthly
data are available for only half of the conflicts.
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Figure 1: Correlations of Monthly NINO3 with That of December. Notes: Calendar year t and its
overlapping “tropical year” t from May of year t through April of year t+ 1 are shown. When possible, food
security outcomes and NINO3.4 are averaged over tropical year. For food security outcomes with data only
at calendar-year intervals (denoted ACR), a contemporaneous annual NINO3.4 index (denoted NINO3) is
averaged over May through December. See Hsiang, Meng, and Cane (2011) for details on the latter averaging
methodology. Reproduced from Hsiang, Meng, and Cane (2011).

I employ the commonly used NINO3.4 index, defined as the average SST anomaly in the

region 5◦N–5◦S, 170◦W–120◦W (see Figure 3), using centered 30-year base periods updated

every five years. The monthly series is obtained from the Climate Prediction Center (CPC) of

the National Oceanic and Atmospheric Administration (Climate Prediction Center Internet

Team 2009). The CPC defines months in which the three-month running average is above

+0.5◦C or below -0.5◦C for at least five consecutive months as El Niño or La Niña months,

respectively, with larger deviations being stronger events.

Because El Niño and La Niña events typically start in boreal spring and last until the

following spring, the “tropical year” t is considered to go from May of year t through April

of year t+ 1. Figure 1 shows the correlations of NINO3 (another index similar to NINO3.4)

in different months with that of December, when an El Niño or La Niña event typically

matures. NINO3 in December of year t is strongly correlated with that of the months from

May of year t through April of year t + 1. Since ENSO occurs at interannual frequencies,

I average NINO3.4 over tropical years and do the same for the food security outcome with

monthly data. For the food security outcomes with data only at calendar-year frequencies,
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Figure 2: Annual NINO3.4 Series. Notes: NINO3.4 averaged over tropical year (May to April of the next
calendar year). Years denoted El Niño in red (La Niña in blue) are those in which the majority of months in
the tropical year are defined as El Niño (La Niña) months by the Climate Prediction Center (CPC) (Climate
Prediction Center Internet Team 2009). Data are from the CPC.

I follow Hsiang, Meng, and Cane (2011) in averaging NINO3.4 over May through December

to match outcomes in a given calendar year to the contemporaneous ENSO signal of the

overlapping tropical year.

The tropical-yearly NINO3.4 series is plotted in Figure 2. The index ranges from roughly

-1.5◦C to +2◦C. I denote El Niño or La Niña tropical years to be those in which the majority

of months in the tropical year are defined as El Niño or La Niña months respectively by the

CPC.

ENSO is expected to have differing effects on food security for countries in different re-

gions of the globe because the physical teleconnections that propagate it primarily reach only

parts of the globe: generally, the tropics. In order to properly identify these differing effects,

I follow the methodology in Hsiang, Meng, and Cane (2011) to split the sample of countries

into an ENSO-teleconnected group and a group that is weakly affected by ENSO. Hsiang,
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Figure 1: Top: Annual averaged May-December NINO3.4 index. La Niña years are often defined as ENSO
index in 1st quintile. El Niño year are often defined as ENSO index in 5th quintile. Data sample period in
shaded area. Bottom: Tropical countries strongly affected by ENSO in “Tropical” sample are red. “Temper-
ate” sample countries are blue. See Hsiang, Meng and Cane (2011) for the method used to identify these two
samples. Light gray countries have no population data, which is needed for sample assignment. Dark grey
rectangle spanning 5◦N-5◦S and 170◦W-120◦W is the NINO3.4 region over which sea surface temperatures
are averaged to compute the NINO3.4 index.

2

Figure 3: Country Assignment into ENSO-Teleconnected and Weakly Affected Groups. Notes: ENSO-
teleconnected countries are in red and weakly affected countries are in blue. Light gray countries have no
population data so are unassigned. The dark gray rectangle shows the NINO3.4 area over which sea surface
temperature anomalies are averaged. See Hsiang, Meng, and Cane (2011) for details on the methodology of
country assignment. Reproduced from Hsiang and Meng (2015) Online Appendix.

Meng, and Cane (2011) use local surface temperature to identify ENSO-teleconnected lo-

cations for theoretical reasons and because it is less spatially variable than other climatic

variables. Global pixels are considered ENSO-teleconnected if surface temperature is pos-

itively correlated with NINO3 of two months prior for at least three months. Countries

are then assigned ENSO-teleconnected if the majority of their population resides in telecon-

nected pixels and are deemed weakly affected if not. This binary classification rather than a

continuous measure of each country’s teleconnection to ENSO is used since Hsiang, Meng,

and Cane (2011) find that the distributions of population living in ENSO-teleconnected

pixels are near zero or one for the vast majority of countries in their sample. The country

assignment is shown in Figure 3 and listed in Table 9 in Appendix C. For analyses of the food

security outcome that only has data at the more-aggregated regional level, I assign regions

to be either ENSO-teleconnected or weakly affected based on the population-weighted mode

of the countries that make up the region. In the analysis that follows, I estimate the effects

of ENSO separately for countries or regions in the ENSO-teleconnected group and in the

weakly affected group in order to account for potentially differing effects in these two groups.
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Note that ENSO may still be expected to have an effect on countries or regions in the weakly

affected group due to weaker climatic effects, spillover effects, or general equilibrium effects.

3.2 Measuring Global Food Security

To analyze global food security, I use panel data on three food security outcomes—food

supply and food prices at the country level and undernourishment at the regional level. The

food supply and food prices outcomes together summarize national food markets, while the

undernourishment outcome sheds light on household access to these markets. The three

outcomes provide interrelated and complementary perspectives on the stability of the food-

availability and food-access dimensions of food security. To measure these outcomes, I utilize

various datasets in the FAOSTAT database of the FAO (FAO 2019).

3.2.1 Measuring Food Supply

To measure food supply, I use the variable food supply per capita per day measured annually

at the country level from 1961 to 2013 from the historical Food Balance Sheets dataset in

the FAOSTAT database (FAO 2019). The annual food supply of a country equals the sum

of the quantity of food produced in that country, the net quantity imported, and the net

change in stocks, minus the quantity not for human consumption. The measure is expressed

as the average number of calories available to every person every day in a given country-year.

In this analysis, I only consider sovereign and constituent countries because they con-

stitute complete economies and food systems; dependencies are omitted. Countries with

fewer than three years of data are also dropped because the series can be perfectly fit by the

country-specific linear trend in the regression specification. Table 1 presents summary statis-

tics for the food supply per capita per day outcome separately for the ENSO-teleconnected

and weakly affected country groups. The ENSO-teleconnected group contains 92 countries

and 53 years for a total of 4,815 observations, while the weakly affected group contains 77

countries and 53 years for a total of 3,260 observations. For the food supply per capita per
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Table 1: Summary Statistics for the Food Supply Per Capita Per Day Outcome by Country Group

ENSO-teleconnected Weakly affected

Mean SD SD within Mean SD SD within

Food supply/capita/day (kcal) 2,311 377 237 2,930 461 253
Food supply/capita/day 1961-1969 (kcal) 2,094 300 84 2,687 491 93
Food supply/capita/day 1970-1979 (kcal) 2,192 341 103 2,821 471 109
Food supply/capita/day 1980-1989 (kcal) 2,311 381 103 2,960 417 96
Food supply/capita/day 1990-1999 (kcal) 2,340 365 79 2,931 448 124
Food supply/capita/day 2000-2009 (kcal) 2,479 345 80 3,055 425 86
Food supply/capita/day 2010-2013 (kcal) 2,592 329 35 3,123 377 30
Countries 92 77
Years 53 53
Observations 4,815 3,260

Notes: Each observation is a country-year and the sample period is 1961-2013. Summary statistics
are displayed separately for the ENSO-teleconnected and weakly affected country groups. The
summary statistic “SD within” is the standard deviation of food supply per capita per day over the
given period after subtracting country means for that period from each observation. Data are from
the historical Food Balance Sheets dataset in the FAOSTAT database (FAO 2019).

day outcome, over several time periods, the table gives the average, standard deviation, and

standard deviation “within” countries after subtracting from each observation the country

mean for that period. For a point of reference, the U.S. Department of Health and Human

Services and U.S. Department of Agriculture (2015) estimate that adult women require 1,600

to 2,400 kcal per day and adult men 2,000 to 3,000. A couple patterns emerge. Average food

supply per capita per day over the entire study period was lower in the ENSO-teleconnected

group (2,311 kcal) than the weakly affected group (2,930 kcal). Average food supply per

capita per day increased in almost every decade from the 1960s to the 2010s for both groups.

3.2.2 Measuring Food Prices

To measure food prices, I use the variable Food Consumer Price Index (Food CPI) measured

at the country level monthly from January 2000 to July 2019 from the Consumer Price Indices

dataset in the FAOSTAT database (FAO 2019). The Food CPI measures the nominal price

level of an average basket of food and beverages purchased by households as a percentage

of the price level in the reference year, 2010. I divide each Food CPI country series by the

general Consumer Price Index country series with reference year 2010 to obtain a measure
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Table 2: Summary Statistics for the Food Consumer Price Index Outcome by Country Group

ENSO-teleconnected Weakly affected

Mean SD SD within Mean SD SD within

Food CPI (2010 = 100) 100.75 10.94 9.73 99.44 6.25 5.28
Food CPI 2000-2009 (2010 = 100) 106.33 12.75 7.72 101.58 7.38 3.70
Food CPI 2010-2018 (2010 = 100) 96.76 7.14 4.14 97.66 4.38 2.46
Countries 75 69
Tropical years 19 19
Observations 1,060 1,066

Notes: Each observation is a country-tropical-year and the sample period is (tropical years)
2000-2018. Summary statistics are displayed separately for the ENSO-teleconnected and weakly
affected country groups. The summary statistic “SD within” is the standard deviation of Food
Consumer Price Index over the given period after subtracting country means for that period from
each observation. Data are from the Consumer Price Indices dataset in the FAOSTAT database
(FAO 2019).

of the real price level of an average basket of food and beverages as a percentage of 2010

prices in each country.

As with the food supply outcome, only sovereign and constituent countries are included

in the study sample. In order to analyze the Food CPI with respect to interannual ENSO

frequencies, the monthly country series are averaged over tropical years (May to April of

the following year) for tropical years with all twelve months of data. Countries unable to be

assigned to the ENSO-teleconnected or weakly affected group are dropped, as are countries

with fewer than three tropical years of data as with the food supply outcome. Table 2

presents the summary statistics for the Food CPI outcome for the ENSO-teleconnected and

weakly affected country groups. The ENSO-teleconnected group contains 75 countries and

19 tropical years for a total of 1,060 observations, and the weakly affected group contains 69

countries and 19 tropical years for 1,066 total observations. Since the Food CPI measures

prices as a percentage of 2010 prices in each country, cross-country comparisons of food

prices can only be made relative to each country. However, a trend emerges that for both

country groups, the average Food CPI fell from the 2000s to the 2010s.
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Table 3: Summary Statistics for the Prevalence of Undernourishment Outcome by Region Group

ENSO-teleconnected Weakly affected

Mean SD SD within Mean SD SD within

PoU (%) 15.20 10.28 2.68 4.83 4.38 1.45
PoU 2000-2009 (%) 16.80 11.10 1.92 5.29 4.86 0.97
PoU 2010-2018 (%) 13.42 9.03 0.84 4.31 3.72 0.67
Regions 10 9
Years 19 19
Observations 190 171

Notes: Each observation is a region-year and the sample period is 2000-2018.
Summary statistics are displayed separately for the ENSO-teleconnected and
weakly affected region groups. The summary statistic “SD within” is the stan-
dard deviation of prevalence of undernourishment over the given period after
subtracting country means for that period from each observation. Data are from
the Food Security Indicators dataset in the FAOSTAT database (FAO 2019).

3.2.3 Measuring Undernourishment

To measure undernourishment, I use the variable prevalence of undernourishment (PoU)

computed at the country-aggregated regional level annually from 2000 to 2018 from the

Food Security Indicators dataset in the FAOSTAT database (FAO 2019). The prevalence of

undernourishment estimates the percentage of the population whose dietary energy intake is

below the Minimum Dietary Energy Requirement (MDER) necessary for normal and healthy

living and is the main indicator used by the FAO to track macro-level trends in food security.

Table 3 displays summary statistics for the prevalence of undernourishment outcome for

the ENSO-teleconnected and weakly affected region groups. The ENSO-teleconnected group

contains 10 regions and 19 years for 190 total observations, while the weakly affected group

has 9 regions and 19 years for a total of 171 observations. Due to the short sample period

and few number of regions, analyses using this outcome are unfortunately statistically under-

powered, so I treat results using this outcome as suggestive evidence in this paper. Several

patterns are notable from the summary statistics. Average prevalence of undernourishment

over the sample period was much higher among the ENSO-teleconnected regions (15.20%)

than the weakly affected regions (4.83%), with high variation in both groups. In both the

2000s and the 2010s, most of the variation in prevalence of undernourishment is due to cross-
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region differences rather than within-region variation over years. Finally, average prevalence

of undernourishment fell from the 2000s to the 2010s in both groups.

3.3 Identification Strategy

ENSO is determined by physical mechanisms in the equatorial Pacific Ocean and is therefore

exogenous to the food security outcomes in this analysis (Timmermann et al. 2018; Wang

et al. 2017). Because ENSO repeatedly and rapidly shifts the global climate into warmer

and colder states, it serves as a quasi-experiment approximating an ideal experiment compar-

ing separate globes in permanent warm and cold ENSO climates, as pointed out by Hsiang,

Meng, and Cane (2011). By controlling for country- or region-level time-invariant and trend-

ing differences, I use each country or region as a comparison for that same country or region

in different ENSO phases and analyze only the time series variation in ENSO and outcomes,

as in Hsiang and Meng (2015). Thus, I identify an average within-country or within-region

effect of ENSO on various food security outcomes, separately for ENSO-teleconnected and

weakly affected countries or regions.

This strategy for identifying the effect of ENSO on food security outcomes purposefully

accounts for all channels by which ENSO affects these outcomes. While most of the effects

are presumably through changes in agricultural production and macroeconomies due to local

temperature and precipitation, they may also include effects due to tropical storms, disease,

conflict, or other undocumented channels (Hsiang and Meng 2015). Another important

consideration is that ENSO is a globally-correlated climate variable, so all countries or regions

of the world are subjected to the exact same ENSO state at the same time (Hsiang, Meng,

and Cane 2011). Therefore, identified within-country or within-region ENSO effects are a

combination of direct effects of ENSO on that country or region and indirect effects of ENSO

on the rest of the globe that spillover to that country or region. Finally, it is noteworthy that

the state of ENSO is not random in a given year and is in fact somewhat predictable. Thus,

identified effects of ENSO on outcomes are effects of potentially-predicted ENSO variation.

13



These effects are a combination of the “true” physical effects of the ENSO shock and the

effect of planning by human societies.

These considerations imply that the identification of ENSO effects on food security out-

comes in this study may be well-suited to extrapolation to the effects of global warming on

these food security outcomes. Like ENSO, the average global temperature is a climatic vari-

able that may affect food security outcomes through a multitude of channels, is correlated

around the globe, and is somewhat predictable. While the effects of a permanent increase

in global average temperature are not necessarily expected to be the same as a permanently

warmer ENSO state, the latter effect may be a more useful theoretical comparison than the

effects of local, random weather shocks. In this paper, I focus on interpreting the effects of

ENSO itself and leave this extrapolation to further research to carefully compare the physical

mechanisms of ENSO and global warming.

3.4 Econometric Strategy

In my baseline regression specification, I follow the analysis in Hsiang and Meng (2015) and

estimate the linear model

Yit = βENSOt + γENSOt−1 + θit+ µi + εit (1)

where Yit is a food security outcome (food supply per capita per day, Food CPI, or prevalence

of undernourishment) in country or region i and tropical or calendar year t depending on the

data for the outcome. ENSOt is indexed by NINO3.4 averaged over tropical year t or May

to December of calendar year t, and β and γ estimate effects of ENSO in years t and t− 1,

respectively, on the outcome. θi are country- or region-specific trends and µi are country or

region fixed effects. εit captures the residual error. I estimate the model separately for the

ENSO-teleconnected and weakly affected country or region groups.

I estimate the contemporaneous and one-year-lagged effects of ENSO on food security

14



outcomes since El Niño and La Niña events can last more than one calendar or tropical year,

may cause persistent or delayed effects that only materialize after a year, or may have tem-

poral displacement effects, in which case the contemporary and one-year-lagged effects are

of opposite sign. Furthermore, Hsiang and Meng (2015) and Cashin, Mohaddes, and Raissi

(2017) document contemporaneous and one-year-lagged ENSO effects on agricultural pro-

duction and macroeconomies, respectively, which are hypothesized to be the main channels

through which ENSO affects food security.

Several considerations mitigate concerns related to time series variation. The inclusion of

country- or region-specific linear trends addresses non-stationarity in the outcome variables

Yit. Meanwhile, the explanatory variable ENSOt indexed by NINO3.4 is stationary since

NINO3.4 is defined as the average SST anomaly using centered and updated base periods.

The residual errors εit are allowed to be spatially correlated within 2,000 km and serially

correlated over five years for regressions at the country-year level as in Hsiang and Meng

(2015) or within 4,000 km for regressions at the region-year level (Conley 1999; Hsiang 2010).

I use alternative distances and time lags to check results for robustness in Appendix C. I

use the centroid of each country or the population-weighted-averaged centroids of countries

composing each region to approximate economic distance between societies for the spatial

correlation.

To investigate if ENSO effects on the food security outcomes are nonlinear, I also estimate

the cubic model

Yit = β1ENSOt + β2ENSO
2
t + β3ENSO

3
t

+ γ1ENSOt−1 + γ2ENSO
2
t−1 + γ3ENSO

3
t−1 + θit+ µi + εit

(2)

where all variables are defined as in Equation 1, and βn and γn estimate the effects of ENSO

in years t and t − 1, respectively, on the outcome. Again, I estimate the model separately

for the ENSO-teleconnected and weakly affected country or region groups.

For each country or region group and food security outcome, I compute the F -statistics
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for the joint statistical significance of the quadratic and cubic coefficients on ENSO in year t

(β2, β3) and in year t−1 (γ2, γ3). When there is no significant evidence of a cubic ENSO effect

in years t or t− 1, my preferred specification is the linear model in Equation 1. When there

is significant evidence of a cubic ENSO effect in either period, indicating that a nonlinear

model could better analyze the effect, my preferred specification is the dummy model

Yit =
∑
j

(βj1[ENSOt ∈ Ij]) +
∑
j

(γj1[ENSOt−1 ∈ Ij]) + θit+ µi + εit (3)

where all variables are defined as in Equation 1, Ij are a set of bins dividing the range of

ENSOt, and 1[.] is the indicator function, a dummy for ENSOt being in bin Ij. βj and γj

estimate the effects of ENSO in years t and t− 1, respectively, on the outcome.

4 ENSO and National Food Markets

4.1 ENSO and Food Supply

I begin by analyzing the effects of ENSO on food supply at the country-year level. First, I

visually inspect the linear fits of the ENSO effects. Figure 4 shows linear and nonparametric

fits of food supply per capita per day against NINO3.4 in years t and t − 1 for the ENSO-

teleconnected and weakly affected country groups. In each plot, both food supply per capita

per day and NINO3.4 in the period of interest are residualized over NINO3.4 of the other

period and country-specific fixed effects and linear trends. Thus, the linear fits match the

coefficients of interest estimated in the linear model in Equation 1. 95% confidence intervals

are shown for the linear fits using standard errors corrected for spatial correlation within

2,000 km and serial correlation over five years. The nonparametric fits are local-linear

kernel regressions using the Epanechnikov kernel with a bandwidth of 0.4. The plots suggest

potential nonlinearities in ENSO effects: in ENSO-teleconnected countries, a strong El Niño

corresponding to a very high NINO3.4 in years t and t−1 appear to be associated with larger
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Figure 4: Linear Fits of Food Supply Per Capita Per Day Against NINO3.4 By Country Group and
Period. Notes: Linear and nonparametric fits of food supply per capita per day against NINO3.4 in years t
and t−1 are shown for the ENSO-teleconnected and weakly affected country groups. For each fit, both food
supply per capita per day and NINO3.4 in the period of interest are residualized over NINO3.4 of the other
period and country-specific fixed effects and linear trends. Linear fits are in dashed blue with shaded 95%
confidence intervals using standard errors corrected for spatial correlation (2,000km) and serial correlation
(5 years). Nonparametric fits in solid red are local-linear kernel regressions using the Epanechnikov kernel
with bandwidth 0.4.

decreases in food supply per capita per day than the linear model implies, while a strong La

Niña corresponding to a very low NINO3.4 in year t may also cause a large decrease rather

than a slight increase suggested by the linear model.

In order to test the validity of these suggested nonlinearities, I turn to the estimates of

the linear and cubic models in Equations 1 and 2, respectively. Table 4 shows estimates of

the two models for both country groups, as well as the F -statistics for the joint significance

of the quadratic and cubic NINO3.4 coefficients in years t and t − 1. For both country

groups, the quadratic and cubic NINO3.4 coefficients in year t and t− 1 are both not jointly
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Table 4: Linear and Cubic Regressions of Food Supply Per Capita Per Day on NINO3.4 By Country Group

ENSO-teleconnected Weakly affected

(1) (2) (3) (4)
FS/c/d FS/c/d FS/c/d FS/c/d

NINO3.4t (◦C) -3.368 -0.696 2.195 4.878
(3.578) (7.634) (4.395) (9.084)

NINO3.42t (◦C) -0.934 1.799
(4.632) (6.459)

NINO3.43t (◦C) -2.801 -0.657
(4.291) (5.073)

NINO3.4t−1 (◦C) -2.362 4.548 3.035 6.634
(3.458) (7.387) (4.669) (9.000)

NINO3.42t−1 (◦C) -3.837 5.498
(4.925) (7.558)

NINO3.43t−1 (◦C) -4.387 -2.899
(4.112) (5.671)

Country fixed effects Yes Yes Yes Yes

Country-specific linear trends Yes Yes Yes Yes

Observations 4815 4815 3260 3260
Adjusted R2 0.997 0.997 0.998 0.998
Mean of dependent variable 2,311 2,311 2,930 2,930
F -stat. of nonlinear NINO3.4t vars. 0.40 0.05
F -stat. of nonlinear NINO3.4t−1 vars. 1.99 0.27

Notes: The dependent variable is food supply per capita per day (kcal). Each ob-
servation is a country-year, and the sample period is 1961-2013. NINO3.4t is the
monthly NINO3.4 series averaged over May-December of year t. Standard errors in
parentheses are adjusted for spatial correlation (2,000 km) and serial correlation (5
years). Significance levels are ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1.

significant at the 0.1 level.

Since there is no strong evidence of a cubic ENSO effect in either country group, the

linear model is my preferred specification for analyzing the food supply per capita per day

outcome for both groups. (The results from the dummy model specification in Equation 3

are shown for both country groups in Table 10 in Appendix C and Figure 12 in Appendix

D.) For both country groups, the linear-model NINO3.4 coefficients in year t and t − 1 are

not significant at the 0.1 level. In summary, I observe no significant ENSO effects on food

supply in either country group. These findings are robust to adjusting standard errors for

spatial correlation and serial correlation over alternative distances or time lags (Table 11 in
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Appendix C), removing country-specific linear trends, or adding country-specific quadratic

trends (Table 15 in Appendix C). Even if the observed effects are not due to random error,

their magnitudes are small. A +1◦C increase in NINO3.4 leads to a combined average loss

in years t and t+ 1 of 5.730 kcal per capita per day in ENSO-teleconnected countries, about

one-thirteenth of a slice of bread per capita per day; the corresponding gain of 5.230 kcal

per capita per day in weakly affected countries is even less.

It is remarkable that I find food supply at the country-year level to be quite stable with

respect to ENSO, considering the literature. Iizumi et al. (2014) estimate significant global-

mean crop yield anomalies in El Niño years of -4 to 5%, and Hsiang and Meng (2015) find

that a 1◦C increase in annual NINO3.4 decreases cereal yields and production by 2 to 4%

in ENSO-teleconnected countries and increases them by 2% in weakly affected countries

on average. Cashin, Mohaddes, and Raissi (2017) and Smith and Ubilava (2017) estimate

that El Niño significantly decreases GDP growth by up to 2pp in some ENSO-teleconnected

countries and increases it by up to 0.7pp in some weakly affected countries on average. In

contrast with these large ENSO effects, the observed stability of food supply implies that,

at the country-year level on average, food markets are able to quite successfully smooth

ENSO-driven losses and gains in agricultural production over space (through international

trade) and time (through food stores) and, despite macroeconomic shocks, retain about the

same total demand for food, likely due to relatively inelastic total demand. This is perhaps

evidence of “well-functioning” national food markets.

However, the small and insignificant estimated effects on food supply per capita per day

may belie larger effects on household nourishment if they are not distributed evenly. If the

average loss in ENSO-teleconnected countries due to a +1◦C increase in NINO3.4 is accrued

by only 20% of a country’s population, those individuals lose 28.650 kcal per day; this 20%

could perhaps be poorer households or subsistence farmers weakly integrated into larger

food markets. If additionally the loss only takes hold during half of the year, perhaps when

food stores have run out, the loss is 57.300 kcal per day for those individuals for half of the
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Figure 5: Linear Fits of Food Consumer Price Index Against NINO3.4 By Country Group and Period.
Notes: Linear and nonparametric fits of Food CPI against NINO3.4 in years t and t − 1 are shown for the
ENSO-teleconnected and weakly affected country groups. For each fit, both Food CPI and NINO3.4 in the
period of interest are residualized over NINO3.4 of the other period and country-specific fixed effects and
linear trends. Linear fits are in dashed blue with shaded 95% confidence intervals using standard errors
corrected for spatial correlation (2,000km) and serial correlation (5 years). Nonparametric fits in solid red
are local-linear kernel regressions using the Epanechnikov kernel with bandwidth 0.4.

year—about four-fifths of a slice of bread per day. Furthermore, these caloric losses may

be more detrimental to individuals who are closer to being under the MDER or are already

under it, and the nutritional losses may be more detrimental if the types of foods that are

lost are more nutritious. To investigate some of these considerations further, I turn to the

food prices and undernourishment outcomes.

4.2 ENSO and Food Prices

Here I analyze ENSO effects on food prices at the country-tropical-year level. I begin again

by visually inspecting the linear fits of the ENSO effects. Figure 5 shows linear and non-
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Table 5: Linear and Cubic Regressions of Food Consumer Price Index on NINO3.4 By Country Group

ENSO-teleconnected Weakly affected

(1) (2) (3) (4)
Food CPI Food CPI Food CPI Food CPI

NINO3.4t (◦C) 0.627∗∗∗ 0.692 0.161 0.490
(0.181) (0.515) (0.155) (0.531)

NINO3.42t (◦C) -1.538∗∗∗ -0.499
(0.327) (0.423)

NINO3.43t (◦C) 0.320 -0.0885
(0.243) (0.269)

NINO3.4t−1 (◦C) 0.958∗∗∗ 2.239∗∗∗ 0.672∗∗∗ 1.483∗

(0.176) (0.500) (0.194) (0.884)

NINO3.42t−1 (◦C) -0.468 -0.194
(0.433) (0.549)

NINO3.43t−1 (◦C) -0.385 -0.323
(0.332) (0.513)

Country fixed effects Yes Yes Yes Yes

Country-specific linear trends Yes Yes Yes Yes

Observations 1060 1060 1066 1066
Adjusted R2 0.998 0.998 0.999 0.999
Mean of dependent variable 100.749 100.749 99.445 99.445
F -stat. of nonlinear NINO3.4t vars. 15.04∗∗∗ 1.92
F -stat. of nonlinear NINO3.4t−1 vars. 10.99∗∗∗ 3.19∗∗

Notes: The dependent variable is Food Consumer Price Index (2010 = 100). Each observa-
tion is a country-tropical-year, and the sample period is tropical years 2000-2018. NINO3.4t
is the monthly NINO3.4 series averaged over tropical year t. Standard errors in parentheses
are adjusted for spatial correlation (2,000 km) and serial correlation (5 years). Significance
levels are ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1.

parametric fits as before but for the Food CPI outcome. The plots provide evidence of

nonlinearities in ENSO effects: in both the ENSO-teleconnected and weakly affected coun-

try groups, a very high NINO3.4 in year t seems to correlate with a Food CPI below that

estimated by the linear model. For ENSO-teleconnected countries, a very low NINO3.4 in

year t and t− 1 may be associated with a greater-than-linear decrease in Food CPI.

To test the validity of these suggested nonlinearities, I turn to the estimates of the linear

and cubic models in Equations 1 and 2, respectively. Table 5 displays estimates of the two

models for both country groups, as well as the F -statistics for the joint significance of the

quadratic and cubic NINO3.4 coefficients in years t and t − 1. For ENSO-teleconnected
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Figure 6: Estimated Effects of NINO3.4 on Food Consumer Price Index By Country Group and Period.
Notes: Coefficients from dummy regressions of Food CPI on NINO3.4 (Table 6) are plotted separately by
country group and period. Coefficients estimate effects of NINO3.4 being in the given interval relative to
NINO3.4 being in the neutral interval [−0.25, 0.25). 95% confidence intervals are shown using standard
errors adjusted for spatial correlation (2,000 km) and serial correlation (5 years).

countries, the quadratic and cubic coefficients on NINO3.4 in year t and t − 1 are both

significant at the 0.01 level. For weakly affected countries, the quadratic and cubic coefficients

on NINO3.4 in year t− 1 are significant at the 0.05 level.

Since I find strong evidence of a cubic ENSO effect in both country groups, the dummy

model specification in Equation 3 is my preferred specification for analyzing the Food CPI

outcome for both groups. I present estimates of the dummy model for both country groups

in Table 6 and plot the estimated coefficients in Figure 6. A unit increase in the Food CPI is

an increase by 1% of 2010 prices, and coefficients estimate effects relative to NINO3.4 being

in the neutral interval [−0.25, 0.25).

I first describe the estimated effects in ENSO-teleconnected countries. NINO3.4 in year t
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Table 6: Dummy Regressions of Food Consumer Price Index on NINO3.4 By Country Group

ENSO-teleconnected Weakly affected

(1) (2)
Food CPI Food CPI

NINO3.4t ∈ [−1.5,−0.75) -2.220∗∗∗ -0.0390
(0.604) (0.705)

NINO3.4t ∈ [−0.75,−0.25) 1.567∗∗∗ 2.191∗∗∗

(0.595) (0.728)

NINO3.4t ∈ [−0.25, 0.25) 0 0

NINO3.4t ∈ [0.25, 0.75) 2.290∗∗∗ 2.809∗∗∗

(0.424) (0.684)

NINO3.4t ∈ [0.75, 1.25) 0.226 1.393∗∗

(0.602) (0.579)

NINO3.4t ∈ [1.25, 2.0] -0.546 -0.534
(0.985) (1.115)

NINO3.4t−1 ∈ [−1.5,−0.75) -3.153∗∗∗ -1.159∗

(0.644) (0.619)

NINO3.4t−1 ∈ [−0.75,−0.25) 0.116 0.940∗∗

(0.521) (0.445)

NINO3.4t−1 ∈ [−0.25, 0.25) 0 0

NINO3.4t−1 ∈ [0.25, 0.75) 1.944∗∗∗ 2.997∗∗∗

(0.623) (0.507)

NINO3.4t−1 ∈ [0.75, 1.25) 2.237∗∗∗ 2.323∗∗∗

(0.679) (0.610)

NINO3.4t−1 ∈ [1.25, 2.0] 0.778 1.086∗∗

(0.570) (0.468)

Country fixed effects Yes Yes

Country-specific linear trends Yes Yes

Observations 1060 1066
Adjusted R2 0.998 0.999
Mean of dependent variable 100.749 99.445

Notes: The dependent variable is Food Consumer Price Index (2010 =
100). Each observation is a country-tropical-year, and the sample period
is tropical years 2000-2018. NINO3.4t is the monthly NINO3.4 series av-
eraged over tropical year t. Each variable is a dummy for NINO3.4 being
in the given interval; coefficients estimate effects relative to NINO3.4 being
in the neutral interval [−0.25, 0.25). Standard errors in parentheses are
adjusted for spatial correlation (2,000 km) and serial correlation (5 years).
Significance levels are ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1.
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in the intervals [−0.75,−0.25), [0.25, 0.75), and [0.75, 1.25) increase Food CPI in year t and

t + 1 on average, with effects being significant at the 0.01 level in at least one period. The

combined average effect over years t and t + 1 for NINO3.4 in year t in [−0.75,−0.25) is

+1.683% of 2010 prices, in [0.25, 0.75) it is +4.234% of 2010 prices, and in [0.75, 1.25) it is

+2.463% of 2010 prices, all substantial effects on Food CPI. NINO3.4 in year t in [1.25, 2.0]

has no significant effects on Food CPI in year t and t + 1, and the effects are of opposite

signs, indicating potential displacement effects. In contrast, I find that NINO3.4 in year t

in [−1.5,−0.75) decreases Food CPI in year t and t+ 1 on average, with both effects being

significant at the 0.01 level and with a combined average effect of -5.373% of 2010 prices.

In weakly affected countries, a similar pattern emerges. NINO3.4 in year t in the intervals

[−0.75,−0.25), [0.25, 0.75), and [0.75, 1.25) increase Food CPI in year t and t+1 on average,

with all effects being significant at at least the 0.05 level. The combined average effect over

years t and t + 1 for NINO3.4 in year t in [−0.75,−0.25) is +3.131% of 2010 prices, in

[0.25, 0.75) it is +5.806% of 2010 prices, and in [0.75, 1.25) it is +3.716% of 2010 prices,

all substantial effects on Food CPI. NINO3.4 in year t in [1.25, 2.0] has, on average, an

insignificant negative effect on Food CPI in year t and a positive effect of +1.086% of 2010

prices in year t+1, significant at the 0.05 level, indicating a delayed or potential displacement

effect. These estimated increases for weakly affected countries are larger than those for

ENSO-teleconnected countries. Finally, I find that NINO3.4 in year t in [−1.5,−0.75) on

decreases Food CPI in year t and t + 1 by a combined average effect of -1.198% of 2010

prices, with only the year t+ 1 effect significant at the 0.1 level.

In summary, I observe that for ENSO-teleconnected countries, weak and moderate El

Niño years and weak La Niña years increase food prices by 2 to 4% of 2010 prices, while

strong La Niña years decrease food prices by 5% of 2010 prices, on average. Weakly affected

countries follow a similar pattern, with El Niño years and weak La Niña years increasing

food prices 1 to 6% of 2010 prices, more so than for ENSO-teleconnected regions, and strong

La Niña years decreasing food prices by 1% of 2010 prices, on average. These findings
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are robust to adjusting standard errors for spatial correlation and serial correlation over

alternative distances or time lags (Table 12 in Appendix C) and remain broadly the same

after removing country-specific linear trends or adding country-specific quadratic trends

(Table 16 in Appendix C).

Interpreting a priori what changes in food prices mean for food security is not straight-

forward, since the prices are determined by both supply and demand shocks. For example,

rising food prices may be due to higher costs of procuring food or due to higher demand from

increased household incomes. If the former is true, rising food prices make it more difficult

for households to purchase food. If the latter is true, rising food prices actually reflect more

purchasing of food by households. Indeed, estimated correlations between food prices and

food security in other settings are mixed (Alem and Söderbom 2012; Grace, Brown, and

McNally 2014; Gregory and Coleman-Jensen 2013). Furthermore, effects of food prices on

food security may differ for households that are net producers of food compared to house-

holds that are net consumers (Verpoorten et al. 2013). The Food CPI outcome, a measure of

average national food prices, may also mask subnational geographic variation in food prices

(i.e. urban versus rural areas) or heterogeneity by food type (i.e. greater price effects for

more nutritious foods).

In this setting, however, I have additional information on how national food markets

respond to ENSO from the previous food supply results and the literature. In ENSO-

teleconnected countries, the average increase in food prices caused by El Niño years and the

simultaneous, mostly negative El Niño effects on agricultural production (Iizumi et al. 2014;

Hsiang and Meng 2015) suggest that the market actions necessary to keep national food

supply stable are associated with an increased cost of procuring food, reflected in rising food

prices. At the same time, in order for national food supply to remain stable despite rising

food prices and mostly negative macroeconomic shocks in El Niño years (Cashin, Mohaddes,

and Raissi 2017; Smith and Ubilava 2017), the increased costs are likely absorbed by a

relatively inelastic total demand for food. The decrease in food prices due to a strong La
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Niña year seems to exhibit this pattern in the reverse direction.

Interestingly, in weakly affected countries, the literature documents weaker, mostly pos-

itive El Niño effects on agricultural production (Iizumi et al. 2014; Hsiang and Meng 2015)

and weaker, mixed El Niño effects on macroeconomies (Cashin, Mohaddes, and Raissi 2017),

yet still, El Niño years increase food prices and strong La Niña years decrease food prices on

average, in parallel with the ENSO-teleconnected country group. This suggests spillover or

general equilibrium effects on food prices from the ENSO-teleconnected group to the weakly

affected group.

This analysis of food markets at the country-year level implies little effect of these food

price increases on food security (since food supply is not changing much). However, food

price increases may be particularly impactful on the food security of low-income households

close to the MDER whose nourishment losses may not make up a large enough portion of

total demand to detect in the food supply outcome. In order to further investigate such

effects, I turn to the results on the undernourishment outcome.

5 ENSO and Undernourishment

Here I analyze the effects of ENSO on undernourishment at the region-year level. I begin by

visually inspecting the linear fits of the ENSO effects. Figure 7 shows linear and nonpara-

metric fits as before but for the prevalence of undernourishment outcome and using standard

errors corrected for spatial correlation within 4,000 km and serial correlation over five years.

The plots suggest nonlinearities in ENSO effects: for both the ENSO-teleconnected and

weakly affected region groups, a very low NINO3.4 in year t appears to be associated with

a larger-than-linear decrease in prevalence of undernourishment.

To test the validity of these suggested nonlinearities, I turn to the estimates of the

linear and cubic models in Equations 1 and 2, respectively. Table 7 shows estimates of

the two models for both region groups, as well as the F -statistics for the joint significance
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Figure 7: Linear Fits of Prevalence of Undernourishment Against NINO3.4 By Region Group and Period.
Notes: Linear and nonparametric fits of prevalence of undernourishment against NINO3.4 in years t and
t−1 are shown for the ENSO-teleconnected and weakly affected region groups. For each fit, both prevalence
of undernourishment and NINO3.4 in the period of interest are residualized over NINO3.4 of the other
period and country-specific fixed effects and linear trends. Linear fits are in dashed blue with shaded 95%
confidence intervals using standard errors corrected for spatial correlation (4,000km) and serial correlation
(5 years). Nonparametric fits in solid red are local-linear kernel regressions using the Epanechnikov kernel
with bandwidth 0.4.

of the quadratic and cubic NINO3.4 coefficients in years t and t − 1. Since these tests are

underpowered due to small sample size, the model selection may be biased towards the linear

model. Nevertheless, for ENSO-teleconnected regions, the quadratic and cubic coefficients

on NINO3.4 in year t are jointly significant at the 0.05 level. For weakly affected regions,

the quadratic and cubic coefficients on NINO3.4 in year t and t − 1 are both not jointly

significant at the 0.1 level.

Since I find strong evidence of a cubic ENSO effect in ENSO-teleconnected regions,

the dummy model specification in Equation 3 is my preferred specification for analyzing
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Table 7: Linear and Cubic Regressions of Prevalence of Undernourishment on NINO3.4 By Region Group

ENSO-teleconnected Weakly affected

(1) (2) (3) (4)
PoU PoU PoU PoU

NINO3.4t (◦C) 0.212∗ 0.113 0.131∗ -0.00849
(0.125) (0.349) (0.0723) (0.201)

NINO3.42t (◦C) -0.457∗∗ -0.247∗∗

(0.195) (0.118)

NINO3.43t (◦C) 0.164 0.127
(0.164) (0.0954)

NINO3.4t−1 (◦C) 0.152 0.104 0.0561 0.00151
(0.114) (0.262) (0.0683) (0.177)

NINO3.42t−1 (◦C) -0.0409 -0.0616
(0.255) (0.142)

NINO3.43t−1 (◦C) 0.0669 0.0579
(0.178) (0.109)

Region fixed effects Yes Yes Yes Yes

Region-specific linear trends Yes Yes Yes Yes

Observations 190 190 171 171
Adjusted R2 0.996 0.997 0.991 0.991
Mean of dependent variable 15.198 15.198 4.828 4.828
F -stat. of nonlinear NINO3.4t vars. 3.53∗∗ 2.28
F -stat. of nonlinear NINO3.4t−1 vars. 0.11 0.14

Notes: The dependent variable is prevalence of undernourishment (%). Each observa-
tion is a region-year, and the sample period is 2000-2018. NINO3.4t is the monthly
NINO3.4 series averaged over May-December of year t. Standard errors in parentheses
are adjusted for spatial correlation (4,000 km) and serial correlation (5 years). Signifi-
cance levels are ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1.

the prevalence of undernourishment outcome for this region group. I display estimates of

the dummy model for both region groups in Table 8 and plot the estimated coefficients in

Figure 8. Since the significance tests for these coefficients are underpowered, I interpret

the point estimates as suggestive evidence for ENSO effects on undernourishment. For

ENSO-teleconnected regions, NINO3.4 in year t in the intervals [−0.75,−0.25), [0.25, 0.75),

[0.75, 1.25), and [1.25, 2.0] increases prevalence of undernourishment in years t and t+ 1 on

average, though these effects are not significant at the 0.1 level except for the effect in year

t + 1 of NINO3.4 in year t in [−0.75,−0.25). The combined average effect over years t and

t + 1 for NINO3.4 in year t in [−0.75,−0.25) is +0.834pp, in [0.25, 0.75) it is +0.494pp, in
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Table 8: Dummy Regressions of Prevalence of Undernourishment on NINO3.4 By Region Group

ENSO-teleconnected Weakly affected

(1) (2)
PoU PoU

NINO3.4t ∈ [−1.5,−0.75) -0.623∗∗∗ -0.420∗∗∗

(0.236) (0.134)

NINO3.4t ∈ [−0.75,−0.25) 0.282 -0.0528
(0.344) (0.190)

NINO3.4t ∈ [−0.25, 0.25) 0 0

NINO3.4t ∈ [0.25, 0.75) 0.258 -0.123
(0.447) (0.220)

NINO3.4t ∈ [0.75, 1.25) -0.177 -0.259
(0.484) (0.301)

NINO3.4t ∈ [1.25, 2.0] 0.0168 0.0414
(0.367) (0.223)

NINO3.4t−1 ∈ [−1.5,−0.75) -0.235 -0.206
(0.425) (0.227)

NINO3.4t−1 ∈ [−0.75,−0.25) 0.552∗ 0.126
(0.324) (0.182)

NINO3.4t−1 ∈ [−0.25, 0.25) 0 0

NINO3.4t−1 ∈ [0.25, 0.75) 0.236 -0.111
(0.472) (0.236)

NINO3.4t−1 ∈ [0.75, 1.25) 0.352 -0.0476
(0.466) (0.279)

NINO3.4t−1 ∈ [1.25, 2.0] 0.652 0.149
(0.491) (0.236)

Region fixed effects Yes Yes

Region-specific linear trends Yes Yes

Observations 190 171
Adjusted R2 0.997 0.991
Mean of dependent variable 15.198 4.828

Notes: The dependent variable is prevalence of undernourishment (%).
Each observation is a region-year, and the sample period is 2000-2018.
NINO3.4t is the monthly NINO3.4 series averaged over May-December of
year t. Each variable is a dummy for NINO3.4 being in the given interval;
coefficients estimate effects relative to NINO3.4 being in the neutral inter-
val [−0.25, 0.25). Standard errors in parentheses are adjusted for spatial
correlation (4,000 km) and serial correlation (5 years). Significance levels
are ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1.
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Figure 8: Estimated Effects of NINO3.4 on Prevalence of Undernourishment By Region Group and Period.
Notes: Coefficients from dummy regressions of prevalence of undernourishment on NINO3.4 (Table 8) are
plotted separately by period and region group. Coefficients estimate effects of NINO3.4 being in the given
interval relative to NINO3.4 being in the neutral interval [−0.25, 0.25). 95% confidence intervals are shown
using standard errors adjusted for spatial correlation (4,000 km) and serial correlation (5 years).

[0.75, 1.25) it is +0.175pp, and in [1.25, 2.0] it is +0.669pp, all sizable increases in prevalence

of undernourishment. In contrast, for a very low NINO3.4 in year t in [−1.5,−0.75), the

combined average effect is -0.858pp, a large reduction in prevalence of undernourishment,

with the effect in year t being significant at the 0.01 level.

Since I find no strong evidence of a cubic ENSO effect in weakly affected regions, the

linear model is my preferred specification for analyzing the prevalence of undernourishment

outcome for this region group. For weakly affected regions, a +1◦C increase in NINO3.4

in year t increases prevalence of undernourishment by +0.187pp combined over years t and

t+ 1 on average, with only the effect in year t significant at the 0.1 level.

In summary, I find that for ENSO-teleconnected regions, El Niño years and weak La Niña
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years may increase undernourishment by 0.2 to 0.8pp, while strong La Niña years reduce

undernourishment by 0.9pp, on average. Undernourishment in weakly affected regions is less

affected by ENSO, with El Niño years increasing undernourishment by 0.1 to 0.3pp and La

Niña years decreasing it by 0.1 to 0.2pp on average. These findings are robust to adjusting

standard errors for spatial correlation and serial correlation over alternative distances or

time lags (Tables 13 and 14 in Appendix C) and remain broadly the same after removing

country-specific linear trends or adding country-specific quadratic trends (Table 17 and 18

in Appendix C). Furthermore, these estimated effects on prevalence of undernourishment,

the extensive margin of undernourishment, may be accompanied by effects on the intensive

margin for undernourished households. It is plausible that as more households fall below the

MDER, households already under the MDER also face a reduction in food security. If this

is true, the implied food security effects due to changes in prevalence of undernourishment

are even greater.

That I observe ENSO effects on undernourishment despite finding little effect on food

supply shows that while national food markets are able to supply virtually the same amount

of food per capita, this masks significant food losses or gains for certain households, partic-

ularly those close to the MDER. Mechanisms by which El Niño increases undernourishment

may be through increased food prices, as observed previously; decreased incomes of vul-

nerable households, particularly likely in ENSO-teleconnected regions (Cashin, Mohaddes,

and Raissi 2017; Smith and Ubilava 2017); reduced harvests for subsistence farmers weakly

integrated into larger food markets; or decreased physical access to food markets.

I investigate the food prices channel. Comparing ENSO effects on undernourishment to

those on food prices reveals striking similarities. For the ENSO-teleconnected country and

region group, an El Niño or weak La Niña year causes an increase in food prices and may also

increase undernourishment. A strong La Niña year decreases food prices and also decreases

undernourishment. This implies that increasing (decreasing) food prices are an important

factor pushing marginally-undernourished households below (above) the MDER.

31



For the weakly affected country and region group, there is a similar but weaker corre-

spondence. An El Niño or weak La Niña year causes an increase in food prices but causes

small and mixed effects on undernourishment. A strong La Niña year decreases food prices

and undernourishment, but less so than for the ENSO-teleconnected group. This implies

that ENSO-driven effects on food prices have smaller associated effects on undernourish-

ment for the weakly affected group than for the ENSO-teleconnected group, which may be

thanks to higher average household incomes in weakly affected countries and regions allow-

ing households to generally better absorb food price shocks or stronger welfare support from

governments in these countries.

6 Conclusion

Food security has been suggested to be linked to the global climate, but past literature has

only focused on the effects of local weather conditions, inadequate analogs for global climate

variables.

Here, I study the effects on food security of ENSO, a dominant mode in the global climate.

I match a continuous ENSO index with panel data on three food security outcomes—food

supply and food prices at the country level, which together summarize national food markets,

and undernourishment at the regional level. I separate countries and regions into ENSO-

teleconnected and weakly affected groups and estimate average within-country or within-

region ENSO effects on the three outcomes separately for these two groups.

Looking first at national food markets, I find that ENSO has small and insignificant

effects on food supply at the country-year level in all countries on average. In contrast with

documented, negative ENSO effects on agricultural production and macroeconomies, the

stability of food supply implies that national food markets are able to smooth these ENSO

effects over space and time. However, I also find that ENSO deviations from the neutral

state increase food prices in all countries on average, presumably due to the market actions
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required to maintain stable food supply, with the exception of strong La Niña years, which

decrease food prices on average. The parallel between ENSO-teleconnected and weakly

affected countries also implies that the food price effects spillover from ENSO-teleconnected

to weakly affected countries.

Turning to undernourishment, I find that ENSO deviations from the neutral state may

increase undernourishment in ENSO-teleconnected regions, with the exception of strong La

Niña years, which decrease undernourishment, while warmer ENSO states weakly increase

undernourishment in weakly affected regions, on average. This shows that the observed

stability in food supply belies significant food losses for certain vulnerable households, par-

ticularly in ENSO-teleconnected regions. The parallel between ENSO effects on food prices

and undernourishment suggests that changing food prices play a role in ENSO-driven un-

dernourishment and more so for ENSO-teleconnected regions. Taken together, the results

identify ENSO to be a significant factor in the stability of food access but not food availabil-

ity; ENSO-driven instabilities in food security look not like massive food shortages but rather

like food price fluctuations that affect the nourishment of vulnerable households, particularly

in ENSO-teleconnected areas.

The results from this study have several policy implications. First, given the predictabil-

ity of ENSO (Chen and Cane 2008), they provide estimates for policymakers and households

to forecast effects on food security outcomes. This could help policymakers target food se-

curity policy and households smooth undernourishment and food price shocks over time.

Second, the results suggest that, at the national level, food subsidies may be a more effec-

tive policy tool to address ENSO-driven food insecurity than food aid, since national food

supplies are stable but food prices are not and are correlated with undernourishment. If

externally valid, the results may more broadly suggest that shocks to national food markets

from any cause (similar enough to ENSO) may be better addressed through food subsidies

than through food aid. Third, the implicated spillover or general equilibrium ENSO effects

on food prices from ENSO-teleconnected to weakly affected countries mean that food secu-
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rity policy in ENSO-teleconnected countries may be relevant to weakly affected countries.

Finally, if the effects of ENSO are externally valid to predict the effects of global warming,

another global climate condition similar in many ways to ENSO, the results imply that global

warming may have associated increases in undernourishment and food prices. These effects

may be incorporated into projected costs of global warming scenarios.

Further research using more disaggregated and country-specific data would help solidify

findings and improve the accuracy of food-security forecasts. Investigation of the hetero-

geneities in ENSO effects on food security by country average income (as in Hsiang, Meng,

and Cane (2011)) or openness to trade may uncover valuable patterns. Finally, more re-

search on the mechanisms through which ENSO affects undernourishment and food prices

could find ways to mitigate these ENSO-driven instabilities.

Appendix A Background

A.1 Global Food Security

The FAO defines food security as “a situation that exists when all people, at all times, have

physical, social and economic access to sufficient, safe and nutritious food that meets their

dietary needs and food preferences for an active and healthy life” (FAO, IFAD, UNICEF,

WFP and WHO 2019). Four sequential dimensions of food security follow from this defini-

tion (Pinstrup-Andersen 2009). The first is availability–whether the market for food supplies

enough total food for a given population. This encompasses the capacity of the food mar-

ket (agricultural producers and food reserves) to meet not the total economic demand for

food but the total nutritional demand for food, which could theoretically be higher or lower

(Schmidhuber and Tubiello 2007). If ample food supply is available, the second dimension

is whether consumers (individuals) have adequate access to it, both physical and economic.

In particular, consumer budget constraints, trade-offs to purchasing food, agricultural pro-

duction costs, price markups, and various market frictions can hinder consumers’ acquisition

of a nutritiously-adequate amount of food. Note that individuals may be net consumers or

net producers of food (farmers), though most individuals are net consumers (Tweeten 1999).

Thirdly, if individuals have access to enough food, the dimension of utilization considers

whether individuals properly intake the nutrients and energy from the food. While this

occurs after the market transaction for food, it requires sufficient access to complementary

34



goods such as nutritional education, good health, sanitation, and food preparation parapher-

nalia. Finally, the fourth dimension is the stability of food availability, access, and utilization

in the face of climatic, economic, political, or social supply- and demand-side shocks. This

includes, for example, the stability of food prices and the ability of individuals to smooth

food consumption over time through food stores, insurance, or other devices. Food insecu-

rity, then, is the failure of one or more of these dimensions of food security. In the present

study, I investigate the dimension of stability of food availability and access in the face of

supply- and demand-side shocks caused by ENSO.

The right to food has been widely considered a fundamental human right since its in-

clusion in the Universal Declaration of Human Rights in 1948 (United Nations 1948) and

in the United Nations Sustainable Development Goal of ending hunger and achieving global

food security by 2030 (Rosa 2017). Thus, some see the provision of food as an end in itself

(Mechlem 2004).

Food insecurity has also been shown to negatively impact various health and quality-of-life

outcomes. Food insecurity is associated with decreased consumption of fruits, vegetables,

potassium, fiber, and vitamin C among mothers in rural New York (Kendall, Olson, and

Frongillo 1996) and with low and high body mass index among Finnish adults (Sarlio-

Lähteenkorva and Lahelma 2001). Food-insecure children report poorer health, are more

likely to have asthma, and have compromised psychosocial functioning (Olson 1999), while

food-insecure seniors face limitations in daily activities, in the United States (Gundersen and

Ziliak 2015). Food insecurity has been suggested to increase the incidence of chronic diseases

such as diabetes as well as levels of stress, anxiety, and depression in pregnant women (Lee

et al. 2012). Access to healthcare is also negatively associated with food insecurity, with

food-insecure Americans being more likely to postpone medical care and use acute care

(Kushel et al. 2006). Finally, food-insecure individuals in Canada bemoan the monotony of

their diets and feelings of alienation (Hamelin, Beaudry, and Habicht 2002).

Food insecurity may have large economic costs due to decreased labor productivity and

labor force participation of malnourished individuals and from increased associated health-

care costs. Horton and Steckel (2011) estimate that inadequate nutrition is associated with

a loss of as much as 12% of GDP in poor countries. Fink et al. (2016) find that stunting

(having a low height-for-age) during childhood costs developing countries $616.5 billion per

cohort, while Hoddinott et al. (2013) estimate that a one-fifth reduction in stunting leads to

an 11% income gain on average. Meanwhile, obesity was estimated to cost 2.8% of global

GDP in 2014 (Tremmel et al. 2017) and up to 20% of healthcare expenditures in the United

States in 2005 (Lehnert et al. 2013).

The prevalence of undernourishment of world regions over the last 20 years is shown in
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Figure 9: Annual Prevalence of Undernourishment Series By World Region. Notes: Data are from the
Food Insecurity Indicators dataset in the FAOSTAT database (FAO 2019).

Figure 9 using data from the Food Insecurity Indicators dataset in the FAOSTAT database

(FAO 2019). Despite considerable reductions in undernourishment over the last 20 years,

a substantial level of undernourishment prevails around the world, especially in Africa and

Asia, and the prevalence of undernourishment has seen an uptick since 2015 in Africa, Latin

America and the Caribbean, Oceania, and the world average.

A.2 Causes of Food Insecurity

A set of literature has focused on identifying causes of food insecurity. These studies of-

ten implicitly focus on one dimension of food security, usually availability, access, or the

stability of these two. Many of the causes of food insecurity could plausibly be caused by

food insecurity (i.e. unemployment) or some confounding variable (i.e. health), and most

of these studies lack exogenous variation in the explanatory variable and thus offer only

correlational evidence. Nevertheless, they shed light on some of the potential determinants

of food insecurity.

One strand of the literature has identified climatic and environmental factors as causes

of food insecurity. Qualitative research suggests these factors to be important determinants.

Misselhorn (2005) finds that among local-level case studies across southern Africa, climate
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and environmental stressors were the most commonly cited “direct” driver of food insecurity

and the second most commonly cited “underlying” driver. Based on ethnographic surveys

in Nigeria, Sudan, South Africa, and Mexico, trends in precipitation were ranked one of the

“most important” determinants of food insecurity and droughts “very important” (Ziervogel

et al. 2006). Among surveyed households in northern Bangladesh, 90% reported negative

effects of rainfall variability on food security through reductions in subsistence production or

through increased food prices (Etzold et al. 2014). A few quantitative analyses corroborate

these findings in the rural African setting where most households are smallholders. In rural

Ethiopia, higher annual rainfall levels are associated with higher household food security,

and rainfall deviations from the long-run mean are weakly associated with lower household

food security (Demeke, Keil, and Zeller 2011). In rural Kenya, wet seasons are associated

with a 2 to 11 kcal increase in daily food consumption of households (Nyariki, Wiggins, and

Imungi 2002). Finally, in rural South Africa, households that reported losing most or all of

their crop due to poor rainfall or hailstorms consumed 21% to 48% less food in monetary

value on average (Tibesigwa et al. 2016).

Previous research has also documented the relationship between food insecurity and vari-

ous aspects of the macroeconomy. High-poverty countries have higher prevalence of children

underweight than low-poverty countries on average (Smith, Obeid, and Jensen 2000). In EU

countries following the Great Recession, rising unemployment rates and declining average

wages were associated with increasing prevalence of food insecurity (Loopstra et al. 2016).

In the United States, state poverty and unemployment rates are positively correlated with

prevalence of food insecurity (Dharmasena, Bessler, and Capps 2016). These patterns are

also observed at the household level. In the United States, households with lower incomes

and fewer physical and financial assets are more likely to be food insecure (Gundersen and

Ziliak 2018). In rural Nicaragua, households with off-farm employment and larger farms

have shorter seasonal hunger on average (Bacon et al. 2017). In rural Ethiopia, ox own-

ership and farmland size are positively correlated with food security (Kidane, Alemu, and

Kundhlande 2005). In rural Kenya, off-farm earnings are positively correlated with food

security (Nyariki, Wiggins, and Imungi 2002). Food prices have also been shown to be corre-

lated with food security. As Sub-Saharan Africa faced rising food prices from 2005 to 2008,

self-reported food security improved for rural households and worsened for urban households

on average (Verpoorten et al. 2013). In the same period, another study finds that household

food consumption in Ethiopia decreased on average, particularly strongly for households

with few assets and for casual workers (Alem and Söderbom 2012). In Kenya, higher local

maize prices are correlated with reduced low birth weight of infants (Grace, Brown, and

McNally 2014). In the United States, households in the Supplemental Nutrition Assistance
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Program are more likely to be food insecure in areas with higher food prices (Gregory and

Coleman-Jensen 2013), and perhaps similarly, low-income households are more likely to be

food insecure during seasons of high heating or cooling costs (Nord and Kantor 2006). One

study argues that civil conflict is a cause of food insecurity (Messer and Cohen 2007).

A.3 The El Niño-Southern Oscillation

El Niño climate phenomena are oceanic warming events that occur in the tropical Pacific

Ocean and consist of an increase in sea surface temperature (SST) and a weakening of

equatorial trade winds (Timmermann et al. 2018; Wang et al. 2017). These two occurrences

mutually reinforce each other through the Bjerknes feedback mechanism: a rise in SST in

the eastern tropical Pacific decreases the east-west Pacific SST gradient, reducing equatorial

trade winds, which further reinforces the SST rise. This warming of the tropical Pacific

Ocean generates atmospheric waves that propagate the warming around the globe and affect

local climate conditions in so-called ENSO-teleconnected areas throughout the tropics and

extratropics (Chiang and Sobel 2002). El Niño events typically begin in boreal spring, when

the tropical Pacific experiences low cloud cover and high solar insolation, grow in intensity

through the summer and fall, and reach maturity in the winter, after which they decay

rapidly in late winter and spring.

La Niña phenomena, on the other hand, are oceanic cooling events in the tropical Pacific

Ocean, reinforced by Bjerknes feedback in the opposite direction, that also impact the global

climate, in generally opposite ways to El Niño (Timmermann et al. 2018; Wang et al. 2017).

La Niña events usually follow the decay of El Niño events and mature by the following winter.

However, La Niña events tend to involve smaller deviations in SST than El Niño events and

last longer, up to several years. The repeated shifting of the tropical Pacific Ocean between

El Niño and La Niña phases is known as the El Niño-Southern Oscillation (ENSO) and has

a period of three to seven years. ENSO has been occasionally studied by economists and

deserves attention in the study of the global climate and food security for several reasons.

Firstly, ENSO is the strongest source of interannual fluctuation in the global climate sys-

tem (Timmermann et al. 2018) (other noteworthy interannual patterns in the global climate

system include the North Atlantic Oscillation, the Pacific Decadal Oscillation, and the At-

lantic Multidecadal Oscillation (Hsiang and Kopp 2018)). Its large geographical reach makes

it an important mode for many regions of the globe, especially those with high prevalence

of food insecurity.

Secondly, ENSO is the most predictable interannual fluctuation in the global climate

system (Chen and Cane 2008), although the limits of its predictability due to inherently
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stochastic mechanisms remain a subject of debate (Timmermann et al. 2018). For example,

Chen et al. 2004 predict all significant El Niño events in a 148-year period with lead times of

up to two years. ENSO prediction has become routine practice at climate centers worldwide,

such as the Climate Prediction Center of the National Oceanic and Atmospheric Adminis-

tration (Climate Prediction Center Internet Team 2009). While ENSO forecast models have

plateaued at moderate levels with only gradual improvement in the past couple decades

(Clarke 2014), there is evidence for potential improvement in the future (Chen and Cane

2008). The predictability of ENSO means that the elucidation of its effects on food insecurity

could help governments and agencies predict year-to-year trends in food security.

How ENSO will respond to global climate change remains uncertain and an important

and active area of research (Timmermann et al. 2018). Some climate models project inten-

sification of ENSO (Power et al. 2013), and while the occurrence of exceptionally strong El

Niño events in recent years (1982-83, 1997-98, and 2014-16) suggests so, these trends are not

unprecedented (Cobb et al. 2013; Wolter and Timlin 2011). Whatever the effect of climate

change on ENSO, it is expected to remain a dominant mode in the global climate in the

future, so it remains relevant to study (Wang et al. 2017).

Finally, Hsiang, Meng, and Cane 2011 argue that studying ENSO is preferable to using

local temperature or rainfall shocks as analogs for changes in the global climate for several

reasons. The global climate system may affect socioeconomic outcomes through channels

other than temperature or rainfall; studying ENSO directly accounts for additional chan-

nels. Furthermore, the effect of local weather shocks may be different from the effect of

planetary-scale, correlated weather shocks that are present in the current global climate

system, which global climate change exemplifies. Lastly, the effect of predictable climate

changes on socioeconomic outcomes may be different from unpredictable shocks.

A.4 Global Effects of ENSO

ENSO exhibits a teleconnection pattern that affects local climates in ENSO-teleconnected

areas throughout the tropics and extratropics. Warm ENSO periods are strongly associated

with warmer surface temperatures in Central America, central and west coast South America,

northwest North America, southeast Asia, southeast Africa, and central Australia, while cold

ENSO periods strongly correspond to colder surface temperatures in Central America, central

and west coast South America, northwest North America, western Europe, southeast Asia,

and Africa (Halpert and Ropelewski 1992; Trenberth and Caron 2000). El Niño episodes

are strongly associated with higher precipitation levels in central Pacific, eastern Africa,

and southeastern South America, and with lower precipitation levels in western Pacific,
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positive impacts of El Niño on crop yields are found in up to
30–36% of harvested areas worldwide (Fig. 2 and Supplementary
Fig. 4), including maize in Brazil and Argentina; soybean in the
United States of America and Brazil; rice in part of China,
Indonesia and part of Brazil; and wheat in Argentina, Kazakhstan
and part of South Africa. Cooler and wetter conditions in these
areas during El Niño years (Supplementary Fig. 5) are often
correlated with positive impacts on crop yields but with variations
across regions and crop types. Negative impacts of El Niño on the
yields in irrigated area tend to be mitigated to some extent
compared with those in rainfed area (Supplementary Fig. 6). This
is because negative impacts of El Niño on the yields in the regions
listed above are caused by drier condition. However, the yield
data and irrigation map are not always reliable over the interval
used in this analysis, and the results for some countries in
developing world should be interpreted with caution.

Geographical distributions of the impacts of La Niña. The
geographical pattern of the impacts of La Niña on the yields is
different from that of El Niño. For the four crops examined in
this study, significant negative impacts of La Niña appear in part
of North, Central and South America, and Ethiopia; and La
Niña’s significant positive impacts are found in parts of South and
West Africa (Fig. 3 and Supplementary Fig. 7). The negative
impacts of La Niña on the yields of maize and soybean in the
United States of America are associated with warmer and drier
conditions, as previously reported11,14 (Supplementary Fig. 8).
Owing to this, the negative impacts of La Niña on these crops and
maize particularly in irrigated area tend to be smaller than those
in rainfed area (Supplementary Fig. 6). The negatively impacted
areas account for up to 9–13% of harvested area worldwide (Fig. 3
and Supplementary Fig. 7). In contrast, the extent of area where
significant positive impacts of La Niña are observed is rather
limited (up to 2–4% of harvested area worldwide). The
percentages of both positively and negatively impacted areas in
La Niña years are consistently smaller than the corresponding
values in El Niño years (Figs 2 and 3, and Supplementary Figs 4
and 7). The global crop yields are much more affected both

positively and negatively by El Niño than by La Niña. This
difference suggests that, in terms of global-mean impacts, the
negative impacts of El Niño can be mitigated to some extent by its
positive impacts elsewhere, whereas both positive and negative
signals of La Niña and their compensation are weaker than those
of El Niño.

The impacts of ENSO on global-mean yield anomalies. The
impacts of ENSO on global-mean yield anomalies (weighted by
harvested area) vary across crop types, across ENSO phases and
across the calculation methods of normal yield. The global-mean
yields of maize, rice and wheat in both El Niño and La Niña years
tend to be below normal (� 4.0 to � 0.2%; Fig. 4 and
Supplementary Fig. 9). Therefore, a decrease in the global pro-
duction of maize, rice and wheat might be associated with ENSO
unless harvested areas and/or the number of harvests in a year
increase sufficiently. The global-mean soybean yield in La Niña
years tends to be � 1.6 to � 1.0% below normal. However, the
global-mean soybean yield in El Niño years is þ 2.9 to þ 3.5%
above normal (Fig. 4 and Supplementary Fig. 9). This difference
in global-mean yields is caused by the positive impacts of El Niño
on crop yields in major crop-producing countries, including
the first and second highest soybean-producing countries (the
United States of America and Brazil, respectively; Fig. 2 and
Supplementary Figs 4 and 10). These results indicate that ENSO’s
impacts on crop yields form a complex pattern, and that the
impacts vary among different geographical locations, different
crop types, different ENSO phases, different seasons and different
technology adopted by crop-producing areas. Note that although
the magnitude of the impacts of ENSO on the yields varies with
the analysis methods to some degree, the sign of the impacts is
consistent among most methods (Supplementary Fig. 11).

Comparisons of this study with previous regional studies.
Although this study presented the first global map of the impacts
of ENSO on yields of the four major crops, there were many
similar regional studies9–19. Supplementary Table 1 shows the
comparison of the ENSO’s impacts on the yields revealed in this
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Figure 2 | Impacts of El Niño on crop yield anomalies for four crops. The 5-year running mean method was used to calculate normal yield. The

significance level of the difference in averaged yield anomaly between El Niño years and neutral years was set to be 10% (using the bootstrap with iteration

of 10,000 times; the sample size is 7 for El Niño and 8 for neutral years). The pie diagrams indicate the percentages of harvested area in the

aforementioned areas. All data in the pie diagrams are normalized to the global harvested area in 2000.
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Figure 10: Crop Yield Anomalies in El Niño Years By Crop. Notes: The maps color cropland pixels
with their estimated yield anomalies in El Niño years from a 5-year running mean for four crops. The
significance level is 0.1, and standard errors are bootstrapped. The pie diagrams indicate the distribution of
yield anomalies among global harvested area in 2000. Reproduced from Iizumi et al. (2014).

Australia, southern Asia, southeast Africa, northeastern South America, and the Caribbean,

with median precipitation shifts on the order of 20 percentile points (C. F. Ropelewski

and M. S. Halpert 1987; Chester F. Ropelewski and Michael S. Halpert 1996; Trenberth

and Caron 2000). For a sense of magnitudes, Hsiang and Meng (2015) estimate that a 1◦C

increase in NINO3.4 is associated with a 0.27◦C temperature increase and 4.64 mm/month

precipitation decrease in tropical countries, while it is associated with a 0.13◦C temperature

decrease in temperate countries. In addition, tropical cyclones in the North Pacific tend to

be more intense and longer-lived in El Niño years (Camargo and Sobel 2005), hurricanes in

the North Atlantic are more common during La Niña years (Donnelly and Woodruff 2007),

and higher ENSO variation is associated with more coastal erosion on the Pacific Ocean

basin (Barnard et al. 2015).

These ENSO-driven, local-climatic changes translate into various significant effects on

human societies around the globe. While the main channels of these effects are expected to

be due to changes in local temperature and precipitation, there may be other documented

or undocumented climatic channels that affect social and economic variables. The following

cited studies account for all potential channels of ENSO effects by indexing the oscillation

itself.
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study and those reported in the previous studies. In general, the
signs of the impacts (negative or positive) reported in this study
reasonably matches with those reported in the previous studies
across the countries and crops despite of some discrepancies
(Supplementary Table 1). One example of the discrepancy is the
wheat in China. Although the previous study13 reported that El
Niño positively affected the wheat yields in the North China Plain
on the basis of the analysis at three sites, our results showed that
El Niño has both the positive and negative impacts on the wheat

yields in that area (Fig. 2 and Supplementary Fig. 4). The similar
discrepancy can be found in the wheat in Argentina
(Supplementary Table 1). The previous study19 reported the
positive impacts of El Niño on the wheat yields in the southern
part of Argentina and the negative impacts of La Niña on the
wheat yields in the northern part of the country based on the
county-level yield data. In contrast, our study showed that both
the positive and the negative impacts on the wheat yields in
Argentine could be seen in both phases of ENSO (Figs 2 and 3,
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Figure 3 | Impacts of La Niña on crop yield anomalies for four crops. The 5-year running mean method was used to calculate normal yield. The

significance level of the difference in averaged yield anomaly between La Niña years and neutral years was set to be 10% (using the bootstrap with iteration

of 10,000 times; the sample size is 6 for La Niña and 8 for neutral years). The pie diagrams indicate the percentages of harvested area in the

aforementioned areas. All data in the pie diagrams are normalized to the global harvested area in 2000.
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Figure 4 | Global-mean yield anomalies for four crops during each phase of ENSO. The 5-year running mean method was used to calculate normal yields.

Histograms of global-mean yield anomalies (deviations from normal yields) in El Niño years (red), La Niña years (blue) and neutral years (grey). The

numbers in each panel are the mean values. The numbers in parentheses indicate the bootstrap probability that the global-mean yield anomaly in El Niño

(La Niña) years is lower than that in neutral years. A bootstrap probability value of 0.999 (0.001) indicates a significantly smaller (larger) global-mean

yield anomaly in El Niño (La Niña) years compared with that in neutral years at the 0.1% level (using the bootstrap with iteration of 10,000 times).
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Figure 11: Crop Yield Anomalies in La Niña Years By Crop. Notes: The maps color cropland pixels
with their estimated yield anomalies in La Niña years from a 5-year running mean for four crops. The
significance level is 0.1, and standard errors are bootstrapped. The pie diagrams indicate the distribution of
yield anomalies among global harvested area in 2000. Reproduced from Iizumi et al. (2014).

Firstly, ENSO is found to have a significant impact on agricultural yields and production

around the globe. Iizumi et al. (2014) estimate significant maize, soybean, rice, and wheat

yield anomalies in both El Niño and La Niña years for many regions of the world, mapped

in Figures 10 and 11, respectively. The effects vary by region, but Iizumi et al. (2014)

estimate that El Niño years increase the global-mean soybean yield by 2.1 to 5.4% and the

global-mean maize, rice, and wheat yields by -4.3 to +0.8%, while La Niña years decrease

the global-mean yields of all four crops by 0 to 4.5%, on average. Hsiang and Meng (2015)

find that a 1◦C increase in NINO3.4 lowers cereal yields by 2% and total cereal production

by 3.5% for ENSO-teleconnected countries but raises cereal yields by 1.7% and total cereal

production by 2.4% for weakly affected countries on average. These global-level studies are

corroborated by those at the regional or country levels, which also highlight heterogeneity

in ENSO effects depending on location, crop, and growing season. El Niño events tend

to decrease rice production in Indonesia with considerable variation by region (Falcon et

al. 2004), and they tend to decrease rice production in the Philippines only in the dry season

and more so for rainfed systems than irrigated ones (Roberts et al. 2009). Meanwhile, ENSO

has little effect on Chinese rice production because most of its effects occur outside of growing

season with little temperature effect (Deng et al. 2010). El Niño phases decrease rice and
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wheat production in India on average, but not that of sorghum and chickpea (Selvaraju

2003). In the southeastern United States, maize, tomato, sugarcane, and rice yields are

linked to ENSO with substantial heterogeneity by crop and region (Hansen et al. 2015), while

in eastern Argentina, El Niño events are associated with higher maize and sorghum yields

but not soybean and sunflower yields (Podestá et al. 1999). El Niño events are negatively

correlated with, and La Niña events positively correlated with, maize yields in Zimbabwe

(Cane, Eshel, and Buckland 1994). These documented effects on agricultural production

have considerable impact on the income of the agricultural sector. Hsiang and Meng (2015)

estimate that a 1◦C increase in NINO3.4 decreases agricultural income by 1.8% for tropical

countries but increases it by 1.6% for temperate countries on average. Selvaraju (2003)

corroborates this pattern for the Indian case with losses in El Niño years and gains in La

Niña years on average, and Adams et al. (1999) also finds this pattern in the United States

with losses in El Niño years but worse losses in La Niña years on average.

ENSO has also been found to affect the macroeconomy as a whole. Cashin, Mohaddes,

and Raissi (2017) find that a standard-deviation El Niño shock decreases GDP growth in

Australia, Chile, Indonesia, India, Japan, New Zealand and South Africa by 0.5 to 2.5pp,

while it increases GDP growth in the United States, Europe, and China by 0.5 to 0.7pp, on

average. Similarly, Brunner (2002) finds that a standard deviation El Niño shock increases

GDP growth in G-7 countries by 0.5pp on average, though weakly significantly. Smith

and Ubilava (2017) find a 1 to 2pp reduction in economic growth on average due to a 1◦C

increase in NINO3.4 for developing countries, with effects twice as large for tropical areas

than temperate areas. In the case of the United States, Berry and Okulicz-Kozaryn (2008)

find no evidence of ENSO effects on economic growth, but Changnon (1999) estimates net

economic benefit following the 1997-98 El Niño thanks to reductions in heating costs and

record home sales. In other parts of the world, the 1998 El Niño was estimated to decrease

economic activity in Seychelles’s tuna industry (Robinson et al. 2010), and the 1991 El Niño

was found to depress incomes in rural Indonesia on average (Salafsky 1994). ENSO has also

been shown to affect prices. Cashin, Mohaddes, and Raissi (2017) estimate an 8% increase

in non-fuel commodity prices two quarters after a standard deviation ENSO shock, while

Brunner (2002) estimates a 3.5 to 4pp increase in the inflation, on average. El Niño events

tend to increase world rice prices (Falcon et al. 2004) and world prices of coffee from southeast

Asia and Oceania but decrease world prices of coffee from South America and West Africa

(Ubilava 2012).

Finally, ENSO has been linked to human health and conflict. El Niño is associated with

malaria epidemics in India and parts of South America and east Africa (Kovats et al. 2003;

Hales, Edwards, and Kovats 2003; Patz et al. 2005). In the South Pacific, dengue fever
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epidemics are caused by La Niña, while they are associated with El Niño in southeast Asia

and parts of South America. Furthermore, El Niño is associated with Rift Valley Fever in

east Africa, rodent-borne diseases in the United States, and diarrhoeal diseases in Peru and

Bangladesh. Turning to human conflict, civil conflict onset is found to be associated with

El Niño years for tropical countries but not for temperate ones (Hsiang, Meng, and Cane

2011).

Appendix B Data Description

B.1 Food Supply Data

I use the variable food supply per capita per day measured annually at the country level from

1961 to 2013 from the historical Food Balance Sheets dataset in the FAOSTAT database

(FAO 2019). FAOSTAT also has a Food Balance Sheets dataset covering 2014 to 2017

using a new methodology, but these data were omitted from the study due to comparability

concerns. Starting with country-reported official statistics on about 100 food items covering

most crop and livestock products (primary commodities and some processed commodities;

for example, apples, beef, and maize), the FAO computes the total quantity of foodstuffs in

a country-year as the sum of the quantity produced in that country, the quantity imported,

and the net change in stocks during the year. From this total quantity of foodstuffs is

subtracted the quantity exported, fed to livestock, used for seed, put to manufacture, and

lost due to storage and transportation, leaving an estimate of food supply available for human

consumption. The food supply is converted to dietary value by applying caloric composition

factors to the distribution of food items supplied and is divided by the country’s population

and the number of days in a year to provide a measure of the average number of calories

available to every person every day in a given country-year.

The FAO warns that data quality varies between countries since the food supply per

capita per day measure is based on official statistics reported by countries and not routinely

assessed for quality, and some data on food production and trade are imputed. Therefore,

the FAO cautions that geographical and temporal comparability over longer time periods are

limited, though comparability over shorter time periods is reasonably good. In all regression

analyses using this data, I only estimate within-country effects, circumventing limitations in

geographic comparability, and I include country-specific linear trends to control for limited

comparability over longer time periods.
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B.2 Food Prices Data

I use the variable Food Consumer Price Index (Food CPI) measured at the country level

monthly from January 2000 to July 2019 from the Consumer Price Indices dataset in the

FAOSTAT database (FAO 2019). The Food CPI data series are based on household survey

data reported by countries and compiled by the International Labor Organization until 2014

and thereafter by the International Monetary Fund (IMF) and the United Nations Statistics

Division (UNSD), with additions from various statistical offices for historical data for certain

countries. The Food CPI measures the nominal price level of an average basket of food and

beverages purchased by households as a percentage of the price level in the reference period.

The reference period for all country series is set to the year 2010 using each country’s

geometric mean of monthly Food CPIs in 2010 as the rescaling factor. I divide each Food

CPI country series by the general Consumer Price Index country series with reference period

2010, also from the Consumer Price Indices dataset, to obtain a measure of the real price

level of an average basket of food and beverages in each country as a percentage of the price

level in 2010.

Since household survey data are reported by countries, the FAO warns that differences in

data collection quality between countries limits cross-country comparability. Cross-country

comparability is also limited due to differences in statistical methodology: some countries

sample households in urban areas only, countries vary in terms of expenditure weights used

and the frequency of their update, and there are differences in countries’ product coverage

and index aggregation formulas. As with the food supply outcome, in all regression analyses

using this data, I only estimate within-country effects using time series variation, avoiding

cross-country comparisons; reassuringly, the source data is processed by the IMF and UNSD

to ensure comparability over time within each country.

B.3 Undernourishment Data

I use the variable prevalence of undernourishment (PoU) computed at the country-aggregated

regional level annually from 2000 to 2018 from the Food Security Indicators dataset in the

FAOSTAT database (FAO 2019). The PoU estimates the percentage of the population

whose dietary energy intake is below the Minimum Dietary Energy Requirement (MDER)

necessary for normal and healthy living and is the main indicator used by the FAO to

track macro-level trends in food insecurity. While the FAO does compute the PoU at the

country level for three-year averages, in this study I use the PoU series at the country-

aggregated regional level (a population-weighted average of its countries) computed annually

in order to temporally isolate the effects of annual ENSO shocks. The PoU is a parametric-
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model-based indicator currently based on three parameters: (1) the average dietary energy

consumed by the population (the previously described food supply outcome from the Food

Balance Sheets dataset); (2) the coefficient of variation representing the variability of dietary

energy consumption in the population; and since 2011, (3) the degree of skewness in the

distribution of dietary energy consumption; the latter two parameters are estimated from

household surveys. The probability distribution of dietary energy consumption is modeled

as a log-normal distribution, or with the skewness parameter, as ranging from a log-normal

to symmetric normal distribution. The MDER is estimated as a weighted average of dietary

energy requirements for each sex-age group, and the PoU is calculated as the percentage of

the modeled dietary energy consumption distribution that falls below this MDER.

Cross-country comparability using this data is limited due to the previously stated data

concerns in the first model parameter (the previous food supply variable) and because the

second and third parameters are derived from household surveys that may have differing

quality of data collection. Still, the FAO deems cross-country and temporal comparability

to be high since the same method is used to compute the PoU in each region. In any case,

as with the previous outcome, I bypass cross-country comparisons and only estimate within-

country effects in all regression analyses using the PoU variable. The FAO also cautions that

the precision of PoU estimates is low, with margins of error likely exceeding 2.5pp, due to

the uncertainty associated with each of the estimated parameters in the model. This noise is

captured in the residual error term in my regression specifications but hinders the statistical

power of the analyses.

Appendix C Additional Tables

45



Table 9: Country and Region Assignment into ENSO-Teleconnected and Weakly Affected Groups

ENSO-teleconnected Weakly affected

Countries Angola; Antigua and Barbuda; Aruba; Aus-
tralia; Bahamas; Bangladesh; Barbados; Be-
lize; Benin; Bolivia (Plurinational State of);
Botswana; Brazil; Brunei Darussalam; Burk-
ina Faso; Burundi; Cabo Verde; Cambodia;
Cameroon; Central African Republic; Chad;
China, Hong Kong SAR; China, Macao SAR;
China, Taiwan Province of; Colombia; Co-
moros; Congo; Costa Rica; Cote d’Ivoire;
Cuba; Djibouti; Dominica; Dominican Re-
public; Ecuador; El Salvador; Equatorial
Guinea; Eswatini; Ethiopia; Gabon; Gam-
bia; Ghana; Grenada; Guatemala; Guinea;
Guinea-Bissau; Guyana; Haiti; Honduras; In-
dia; Indonesia; Jamaica; Kenya; Lao Peo-
ple’s Democratic Republic; Lesotho; Liberia;
Madagascar; Malawi; Malaysia; Maldives;
Mali; Mauritania; Mauritius; Mexico; Mo-
rocco; Mozambique; Myanmar; Namibia;
Nicaragua; Niger; Nigeria; Oman; Panama;
Paraguay; Peru; Philippines; Rwanda; Saint
Kitts and Nevis; Saint Lucia; Saint Vin-
cent and the Grenadines; Sao Tome and
Principe; Senegal; Seychelles; Sierra Leone;
Singapore; South Africa; South Sudan; Sri
Lanka; Suriname; Thailand; Timor-Leste;
Togo; Trinidad and Tobago; Uganda; United
Arab Emirates; United Republic of Tanza-
nia; Venezuela (Bolivarian Republic of); Viet
Nam; Yemen; Zambia; Zimbabwe

Afghanistan; Aland Islands; Albania; Al-
geria; Andorra; Argentina; Armenia; Aus-
tria; Azerbaijan; Bahrain; Belarus; Belgium;
Bhutan; Bosnia and Herzegovina; Bulgaria;
Canada; Chile; China, mainland; Croatia;
Cyprus; Czechia; Democratic People’s Re-
public of Korea; Denmark; Egypt; Estonia;
Fiji; Finland; France; Georgia; Germany;
Greece; Hungary; Iceland; Iran (Islamic Re-
public of); Iraq; Ireland; Israel; Italy; Japan;
Jordan; Kazakhstan; Kiribati; Kuwait; Kyr-
gyzstan; Latvia; Lebanon; Lithuania; Luxem-
bourg; Malta; Mongolia; Montenegro; Nepal;
Netherlands; New Zealand; North Mace-
donia; Norway; Pakistan; Poland; Portu-
gal; Qatar; Republic of Korea; Republic
of Moldova; Romania; Russian Federation;
San Marino; Saudi Arabia; Serbia; Slovakia;
Slovenia; Solomon Islands; Spain; Sweden;
Switzerland; Tajikistan; Tunisia; Turkey;
Turkmenistan; Ukraine; United Kingdom;
United States of America; Uruguay; Uzbek-
istan; Vanuatu

Regions Australia and New Zealand; Caribbean; Cen-
tral America; Eastern Africa; Middle Africa;
South America; South-Eastern Asia; South-
ern Africa; Southern Asia; Western Africa

Central Asia; Eastern Asia; Eastern Europe;
Northern Africa; Northern America; North-
ern Europe; Southern Europe; Western Asia;
Western Europe

Notes: ENSO-teleconnection assignment of all countries and regions in at least one study sample. See
Hsiang, Meng, and Cane (2011) for details on the methodology of country assignment. Regions are assigned
ENSO-teleconnected or weakly affected based on the population-weighted mode of the countries that make
up the region.
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Table 10: Dummy Regressions of Food Supply Per Capita Per Day on NINO3.4 By Country Group

ENSO-teleconnected Weakly affected

(1) (2)
FS/c/d FS/c/d

NINO3.4t ∈ [−1.5,−0.75) 2.232 -3.022
(9.197) (11.00)

NINO3.4t ∈ [−0.75,−0.25) -2.728 11.32
(9.396) (11.92)

NINO3.4t ∈ [−0.25, 0.25) 0 0

NINO3.4t ∈ [0.25, 0.75) -10.76 15.46
(9.205) (10.48)

NINO3.4t ∈ [0.75, 1.25) -13.81 -15.48
(12.48) (14.29)

NINO3.4t ∈ [1.25, 2.0] -7.769 22.26
(12.12) (16.31)

NINO3.4t−1 ∈ [−1.5,−0.75) -5.865 3.363
(9.786) (13.17)

NINO3.4t−1 ∈ [−0.75,−0.25) -6.245 16.32
(9.086) (11.30)

NINO3.4t−1 ∈ [−0.25, 0.25) 0 0

NINO3.4t−1 ∈ [0.25, 0.75) -2.740 20.02∗

(8.816) (10.24)

NINO3.4t−1 ∈ [0.75, 1.25) -11.24 -2.109
(12.61) (14.26)

NINO3.4t−1 ∈ [1.25, 2.0] -15.43 35.51∗∗

(12.80) (17.77)

Country fixed effects Yes Yes

Country-specific linear trends Yes Yes

Observations 4815 3260
Adjusted R2 0.997 0.998
Mean of dependent variable 2,311 2,930

Notes: The dependent variable is food supply per capita per day (kcal).
Each observation is a country-year, and the sample period is 1961-2013.
NINO3.4t is the monthly NINO3.4 series averaged over May-December of
year t. Each variable is a dummy for NINO3.4 being in the given interval;
coefficients estimate effects relative to NINO3.4 being in the neutral inter-
val [−0.25, 0.25). Standard errors in parentheses are adjusted for spatial
correlation (2,000 km) and serial correlation (5 years). Significance levels
are ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1.
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Table 11: Preferred Regressions of Food Supply Per Capita Per Day on NINO3.4 By Country Group With
Varying Standard Errors

ENSO-teleconnected Weakly affected

(1) (2) (3) (4) (5) (6)
FS/c/d FS/c/d FS/c/d FS/c/d FS/c/d FS/c/d

NINO3.4t (◦C) -3.368 -3.368 -3.368 2.195 2.195 2.195
(3.578) (3.625) (4.119) (4.395) (4.487) (5.019)

NINO3.4t−1 (◦C) -2.362 -2.362 -2.362 3.035 3.035 3.035
(3.458) (3.497) (3.936) (4.669) (4.777) (5.357)

Country fixed effects Yes Yes Yes Yes Yes Yes

Country-specific linear trends Yes Yes Yes Yes Yes Yes

Observations 4815 4815 4815 3260 3260 3260
Adjusted R2 0.997 0.997 0.997 0.998 0.998 0.998
Mean of dependent variable 2,311 2,311 2,311 2,930 2,930 2,930
Spatial correlation (km) 2000 2000 4000 2000 2000 4000
Serial correlation (years) 5 10 5 5 10 5

Notes: The dependent variable is food supply per capita per day (kcal). Each observation
is a country-year, and the sample period is 1961-2013. NINO3.4t is the monthly NINO3.4
series averaged over May-December of year t. Standard errors in parentheses are adjusted for
spatial correlation and serial correlation over varying distances and time lags. Significance
levels are ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1.
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Table 12: Preferred Regressions of Food Consumer Price Index on NINO3.4 By Country Group With
Varying Standard Errors

ENSO-teleconnected Weakly affected

(1) (2) (3) (4) (5) (6)
FCPI FCPI FCPI FCPI FCPI FCPI

NINO3.4t ∈ [−1.5,−0.75) -2.220∗∗∗ -2.220∗∗∗ -2.220∗∗∗ -0.0390 -0.0390 -0.0390
(0.604) (0.713) (0.760) (0.705) (0.744) (0.703)

NINO3.4t ∈ [−0.75,−0.25) 1.567∗∗∗ 1.567∗∗ 1.567∗∗ 2.191∗∗∗ 2.191∗∗∗ 2.191∗∗∗

(0.595) (0.651) (0.798) (0.728) (0.741) (0.755)

NINO3.4t ∈ [−0.25, 0.25) 0 0 0 0 0 0

NINO3.4t ∈ [0.25, 0.75) 2.290∗∗∗ 2.290∗∗∗ 2.290∗∗∗ 2.809∗∗∗ 2.809∗∗∗ 2.809∗∗∗

(0.424) (0.481) (0.550) (0.684) (0.687) (0.789)

NINO3.4t ∈ [0.75, 1.25) 0.226 0.226 0.226 1.393∗∗ 1.393∗∗ 1.393∗∗

(0.602) (0.611) (0.809) (0.579) (0.570) (0.651)

NINO3.4t ∈ [1.25, 2.0] -0.546 -0.546 -0.546 -0.534 -0.534 -0.534
(0.985) (0.996) (1.248) (1.115) (1.132) (1.208)

NINO3.4t−1 ∈ [−1.5,−0.75) -3.153∗∗∗ -3.153∗∗∗ -3.153∗∗∗ -1.159∗ -1.159∗ -1.159∗

(0.644) (0.570) (0.876) (0.619) (0.612) (0.673)

NINO3.4t−1 ∈ [−0.75,−0.25) 0.116 0.116 0.116 0.940∗∗ 0.940∗∗ 0.940∗∗

(0.521) (0.545) (0.680) (0.445) (0.452) (0.474)

NINO3.4t−1 ∈ [−0.25, 0.25) 0 0 0 0 0 0

NINO3.4t−1 ∈ [0.25, 0.75) 1.944∗∗∗ 1.944∗∗∗ 1.944∗∗ 2.997∗∗∗ 2.997∗∗∗ 2.997∗∗∗

(0.623) (0.626) (0.873) (0.507) (0.501) (0.511)

NINO3.4t−1 ∈ [0.75, 1.25) 2.237∗∗∗ 2.237∗∗∗ 2.237∗∗∗ 2.323∗∗∗ 2.323∗∗∗ 2.323∗∗∗

(0.679) (0.685) (0.848) (0.610) (0.604) (0.606)

NINO3.4t−1 ∈ [1.25, 2.0] 0.778 0.778 0.778 1.086∗∗ 1.086∗∗ 1.086∗∗

(0.570) (0.605) (0.662) (0.468) (0.471) (0.472)

Country fixed effects Yes Yes Yes Yes Yes Yes

Country-specific linear trends Yes Yes Yes Yes Yes Yes

Observations 1060 1060 1060 1066 1066 1066
Adjusted R2 0.998 0.998 0.998 0.999 0.999 0.999
Mean of dependent variable 100.749 100.749 100.749 99.445 99.445 99.445
Spatial correlation (km) 2000 2000 4000 2000 2000 4000
Serial correlation (years) 5 10 5 5 10 5

Notes: The dependent variable is Food Consumer Price Index (2010 = 100). Each observation is a
country-tropical-year, and the sample period is tropical years 2000-2018. NINO3.4t is the monthly
NINO3.4 series averaged over tropical year t. Each variable is a dummy for NINO3.4 being in the given
interval; coefficients estimate effects relative to NINO3.4 being in the neutral interval [−0.25, 0.25).
Standard errors in parentheses are adjusted for spatial correlation and serial correlation over varying
distances and time lags. Significance levels are ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1.
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Table 13: Preferred Regressions of Prevalence of Undernourishment on NINO3.4 in ENSO-Teleconnected
Regions With Varying Standard Errors

ENSO-teleconnected

(1) (2) (3)
PoU PoU PoU

NINO3.4t ∈ [−1.5,−0.75) -0.623∗∗∗ -0.623∗∗ -0.623∗∗∗

(0.236) (0.247) (0.205)

NINO3.4t ∈ [−0.75,−0.25) 0.282 0.282 0.282
(0.344) (0.380) (0.275)

NINO3.4t ∈ [−0.25, 0.25) 0 0 0

NINO3.4t ∈ [0.25, 0.75) 0.258 0.258 0.258
(0.447) (0.461) (0.427)

NINO3.4t ∈ [0.75, 1.25) -0.177 -0.177 -0.177
(0.484) (0.484) (0.536)

NINO3.4t ∈ [1.25, 2.0] 0.0168 0.0168 0.0168
(0.367) (0.379) (0.248)

NINO3.4t−1 ∈ [−1.5,−0.75) -0.235 -0.235 -0.235
(0.425) (0.406) (0.416)

NINO3.4t−1 ∈ [−0.75,−0.25) 0.552∗ 0.552 0.552
(0.324) (0.344) (0.340)

NINO3.4t−1 ∈ [−0.25, 0.25) 0 0 0

NINO3.4t−1 ∈ [0.25, 0.75) 0.236 0.236 0.236
(0.472) (0.483) (0.434)

NINO3.4t−1 ∈ [0.75, 1.25) 0.352 0.352 0.352
(0.466) (0.462) (0.478)

NINO3.4t−1 ∈ [1.25, 2.0] 0.652 0.652 0.652
(0.491) (0.471) (0.464)

Region fixed effects Yes Yes Yes

Region-specific linear trends Yes Yes Yes

Observations 190 190 190
Adjusted R2 0.997 0.997 0.997
Mean of dependent variable 15.198 15.198 15.198
Spatial correlation (km) 4000 4000 8000
Serial correlation (years) 5 10 5

Notes: The dependent variable is prevalence of undernourishment
(%). Each observation is a region-year, and the sample period is
2000-2018. NINO3.4t is the monthly NINO3.4 series averaged over
May-December of year t. Each variable is a dummy for NINO3.4
being in the given interval; coefficients estimate effects relative
to NINO3.4 being in the neutral interval [−0.25, 0.25). Standard
errors in parentheses are adjusted for spatial correlation and serial
correlation over varying distances and time lags. Significance levels
are ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1.
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Table 14: Preferred Regressions of Prevalence of Undernourishment on NINO3.4 in Weakly Affected Regions
With Varying Standard Errors

Weakly affected

(1) (2) (3)
PoU PoU PoU

NINO3.4t (◦C) 0.131∗ 0.131∗ 0.131∗

(0.0723) (0.0727) (0.0766)

NINO3.4t−1 (◦C) 0.0561 0.0561 0.0561
(0.0683) (0.0713) (0.0684)

Region fixed effects Yes Yes Yes

Region-specific linear trends Yes Yes Yes

Observations 171 171 171
Adjusted R2 0.991 0.991 0.991
Mean of dependent variable 4.828 4.828 4.828
Spatial correlation (km) 4000 4000 8000
Serial correlation (years) 5 10 5

Notes: The dependent variable is prevalence of undernourish-
ment (%). Each observation is a region-year, and the sample
period is 2000-2018. NINO3.4t is the monthly NINO3.4 series
averaged over May-December of year t. Standard errors in paren-
theses are adjusted for spatial correlation and serial correlation
over varying distances and time lags. Significance levels are ∗∗∗

p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1.

Table 15: Preferred Regressions of Food Supply Per Capita Per Day on NINO3.4 By Country Group With
Varying Country Trends

ENSO-teleconnected Weakly affected

(1) (2) (3) (4) (5) (6)
FS/c/d FS/c/d FS/c/d FS/c/d FS/c/d FS/c/d

NINO3.4t (◦C) -3.836 -3.368 -2.686 -0.395 2.195 -0.0628
(5.506) (3.578) (2.872) (6.772) (4.395) (3.247)

NINO3.4t−1 (◦C) -2.791 -2.362 -1.710 -0.425 3.035 0.914
(5.387) (3.458) (2.793) (6.882) (4.669) (3.517)

Country fixed effects Yes Yes Yes Yes Yes Yes

Linear trend Yes No No Yes No No

Country-specific linear trends No Yes Yes No Yes Yes

Country-specific quadratic trends No No Yes No No Yes

Observations 4815 4815 4815 3260 3260 3260
Adjusted R2 0.994 0.997 0.998 0.995 0.998 0.999
Mean of dependent variable 2,311 2,311 2,311 2,930 2,930 2,930

Notes: The dependent variable is food supply per capita per day (kcal). Each observation is
a country-year, and the sample period is 1961-2013. NINO3.4t is the monthly NINO3.4 series
averaged over May-December of year t. Standard errors in parentheses are adjusted for spatial
correlation (2,000 km) and serial correlation (5 years). Significance levels are ∗∗∗ p < 0.01, ∗∗

p < 0.05, ∗ p < 0.1.
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Table 16: Preferred Regressions of Food Consumer Price Index on NINO3.4 By Country Group With
Varying Country Trends

ENSO-teleconnected Weakly affected

(1) (2) (3) (4) (5) (6)
FCPI FCPI FCPI FCPI FCPI FCPI

NINO3.4t ∈ [−1.5,−0.75) -3.841∗∗ -2.220∗∗∗ -2.262∗∗∗ -0.373 -0.0390 0.0619
(1.769) (0.604) (0.547) (1.381) (0.705) (0.528)

NINO3.4t ∈ [−0.75,−0.25) 0.528 1.567∗∗∗ 0.298 1.953∗ 2.191∗∗∗ 2.191∗∗∗

(1.353) (0.595) (0.568) (1.179) (0.728) (0.525)

NINO3.4t ∈ [−0.25, 0.25) 0 0 0 0 0 0

NINO3.4t ∈ [0.25, 0.75) 2.091∗∗∗ 2.290∗∗∗ 2.092∗∗∗ 2.537∗∗ 2.809∗∗∗ 2.642∗∗∗

(0.784) (0.424) (0.483) (1.011) (0.684) (0.535)

NINO3.4t ∈ [0.75, 1.25) 0.305 0.226 0.515 1.162 1.393∗∗ 1.160∗∗

(1.160) (0.602) (0.527) (1.014) (0.579) (0.460)

NINO3.4t ∈ [1.25, 2.0] -2.093 -0.546 -2.576∗∗ -0.370 -0.534 -0.112
(2.248) (0.985) (1.013) (2.016) (1.115) (0.839)

NINO3.4t−1 ∈ [−1.5,−0.75) -3.162∗∗∗ -3.153∗∗∗ -2.006∗∗∗ -1.168 -1.159∗ -1.170∗∗

(0.817) (0.644) (0.475) (0.906) (0.619) (0.513)

NINO3.4t−1 ∈ [−0.75,−0.25) -0.980 0.116 -0.650 0.854 0.940∗∗ 1.016∗∗∗

(1.140) (0.521) (0.487) (0.872) (0.445) (0.374)

NINO3.4t−1 ∈ [−0.25, 0.25) 0 0 0 0 0 0

NINO3.4t−1 ∈ [0.25, 0.75) 2.210∗ 1.944∗∗∗ 2.666∗∗∗ 2.684∗∗ 2.997∗∗∗ 2.582∗∗∗

(1.295) (0.623) (0.547) (1.123) (0.507) (0.452)

NINO3.4t−1 ∈ [0.75, 1.25) 2.738 2.237∗∗∗ 2.186∗∗∗ 2.444∗ 2.323∗∗∗ 2.127∗∗∗

(1.680) (0.679) (0.547) (1.320) (0.610) (0.503)

NINO3.4t−1 ∈ [1.25, 2.0] 0.109 0.778 -0.229 1.180 1.086∗∗ 1.053∗∗∗

(1.242) (0.570) (0.461) (0.884) (0.468) (0.358)

Country fixed effects Yes Yes Yes Yes Yes Yes

Linear trend Yes No No Yes No No

Country-specific linear trends No Yes Yes No Yes Yes

Country-specific quadratic trends No No Yes No No Yes

Observations 1060 1060 1060 1066 1066 1066
Adjusted R2 0.993 0.998 0.999 0.997 0.999 0.999
Mean of dependent variable 100.749 100.749 100.749 99.445 99.445 99.445

Notes: The dependent variable is Food Consumer Price Index (2010 = 100). Each observation is a
country-tropical-year, and the sample period is tropical years 2000-2018. NINO3.4t is the monthly
NINO3.4 series averaged over tropical year t. Each variable is a dummy for NINO3.4 being in the given
interval; coefficients estimate effects relative to NINO3.4 being in the neutral interval [−0.25, 0.25).
Standard errors in parentheses are adjusted for spatial correlation (2,000 km) and serial correlation (5
years). Significance levels are ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1.
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Table 17: Preferred Regressions of Prevalence of Undernourishment on NINO3.4 in ENSO-Teleconnected
Regions With Varying Region Trends

ENSO-teleconnected

(1) (2) (3)
PoU PoU PoU

NINO3.4t ∈ [−1.5,−0.75) -0.623∗ -0.623∗∗∗ -0.397∗∗∗

(0.352) (0.236) (0.117)

NINO3.4t ∈ [−0.75,−0.25) 0.282 0.282 -0.0972
(0.497) (0.344) (0.140)

NINO3.4t ∈ [−0.25, 0.25) 0 0 0

NINO3.4t ∈ [0.25, 0.75) 0.258 0.258 0.157
(0.574) (0.447) (0.179)

NINO3.4t ∈ [0.75, 1.25) -0.177 -0.177 0.188
(0.593) (0.484) (0.134)

NINO3.4t ∈ [1.25, 2.0] 0.0168 0.0168 -0.866∗∗∗

(0.715) (0.367) (0.222)

NINO3.4t−1 ∈ [−1.5,−0.75) -0.235 -0.235 -0.205
(0.526) (0.425) (0.175)

NINO3.4t−1 ∈ [−0.75,−0.25) 0.552 0.552∗ -0.205∗

(0.510) (0.324) (0.123)

NINO3.4t−1 ∈ [−0.25, 0.25) 0 0 0

NINO3.4t−1 ∈ [0.25, 0.75) 0.236 0.236 0.405∗

(0.609) (0.472) (0.225)

NINO3.4t−1 ∈ [0.75, 1.25) 0.352 0.352 0.310
(0.618) (0.466) (0.209)

NINO3.4t−1 ∈ [1.25, 2.0] 0.652 0.652 -0.0149
(0.674) (0.491) (0.233)

Region fixed effects Yes Yes Yes

Linear trend Yes No No

Region-specific linear trends No Yes Yes

Region-specific quadratic trends No No Yes

Observations 190 190 190
Adjusted R2 0.988 0.997 0.999
Mean of dependent variable 15.198 15.198 15.198

Notes: The dependent variable is prevalence of undernourishment
(%). Each observation is a region-year, and the sample period is
2000-2018. NINO3.4t is the monthly NINO3.4 series averaged over
May-December of year t. Each variable is a dummy for NINO3.4
being in the given interval; coefficients estimate effects relative to
NINO3.4 being in the neutral interval [−0.25, 0.25). Standard errors
in parentheses are adjusted for spatial correlation (4,000 km) and
serial correlation (5 years). Significance levels are ∗∗∗ p < 0.01, ∗∗

p < 0.05, ∗ p < 0.1.
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Table 18: Preferred Regressions of Prevalence of Undernourishment on NINO3.4 in Weakly Affected Regions
With Varying Region Trends

Weakly affected

(1) (2) (3)
PoU PoU PoU

NINO3.4t (◦C) 0.131 0.131∗ 0.0786∗∗

(0.194) (0.0723) (0.0376)

NINO3.4t−1 (◦C) 0.0561 0.0561 0.0714∗∗

(0.209) (0.0683) (0.0339)

Region fixed effects Yes Yes Yes

Linear trend Yes No No

Region-specific linear trends No Yes Yes

Region-specific quadratic trends No No Yes

Observations 171 171 171
Adjusted R2 0.955 0.991 0.995
Mean of dependent variable 4.828 4.828 4.828

Notes: The dependent variable is prevalence of undernourishment
(%). Each observation is a region-year, and the sample period
is 2000-2018. NINO3.4t is the monthly NINO3.4 series averaged
over May-December of year t. Standard errors in parentheses are
adjusted for spatial correlation (4,000 km) and serial correlation (5
years). Significance levels are ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1.
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Appendix D Additional Figures
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Figure 12: Estimated Effects of NINO3.4 on Food Supply Per Capita Per Day By Country Group and
Period. Notes: Coefficients from dummy regressions of food supply per capita per day on NINO3.4 (Table
10) are plotted separately by country group and period. Coefficients estimate effects of NINO3.4 being in
the given interval relative to NINO3.4 being in the neutral interval [−0.25, 0.25). 95% confidence intervals
are shown using standard errors adjusted for spatial correlation (2,000 km) and serial correlation (5 years).

References

Adams, Richard M., Chi-Chung Chen, Bruce A. McCarl, and Rodney F. Weiher. 1999. “The
economic consequences of ENSO events for agriculture.” Climate Research 13, no. 3
(December 10): 165–172. doi:10.3354/cr013165.
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