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Abstract

This paper addresses the research gap in how reinforcement learning can be used for the

70% of everyday amateur traders in the United States, in an attempt to reach and even surpass an

optimal portfolio formulated by the Markowitz Efficient Frontier. To do so, I created a

Reinforcement Learning algorithm that outputs the reward and loss functions of each S&P 100

stock over the span of two years. In combination with the technical indicators that were

implemented in the training function, my Reinforcement Learning algorithm outputs the total

rewards (expected returns) and losses (decrease in profit from investment) that were experienced

per stock, with which I sort into a list to determine the stocks with the highest weight to create an

optimal portfolio based on highest reward and lowest loss. Overall, Reinforcement Learning as a

feasible trading strategy that reaches and potentially even surpasses the returns of a portfolio

produced by the Markowitz Efficient Frontier Curve shows promise as a useful trading strategy

to amateur traders who cannot afford or do not use investment firms.
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Introduction

Many past papers create benchmarks between automated algorithms, yet none are able to

support a large training and testing data set while taking into account hyperparameters that are

specific to everyday non-professional traders who do not use brokerage fees or other external

variables. This paper will cater toward non-professional traders who have access to historical

stock data, whether it is through open-source information or trading applications.

The most significant contribution this paper will provide is in the methodology. These

include training models with a large training data set, using a model that puts an adequate weight

on reward functions, using a well-rounded reward function, and comparing the supposed optimal

portfolio that the RL algorithm outputs to what the Efficient Frontier suggests.

In order to avoid using a weak reward function in my reinforcement learning model, I

plan to use the average profit or area under the trade, which should prioritize capitalizing on

profit. Essentially, I plan to use the Accumulated Asset Value as a reward function, which

incorporates the entire performance of an evolved trader since it produces a significantly better

performing trader on volatile stocks (Nicholls et al 2008).

In order to ascertain the expected reward and loss behind a series of actions,

reinforcement learning algorithms use a function approximator to estimate the previous action

value function or expected return for taking an action in the current state of the portfolio, namely

a Q-network. A function approximator is a method that is used to estimate the value of a state or

an action, without computing the real “q value”, with the use of historical data, with the added

benefit of saving computation time and memory space. Similar to the goals of a reward

maximizing reinforcement learning algorithm, a Q-network is trained to minimize sequences of

loss functions that change at each iteration (Van Hasselt 2015). While a loss function is typically
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defined to measure how well an algorithm models the dataset, in this study, the loss function also

minimizes the error of optimizing the weights of the portfolio. This indicates that the stocks with

the highest weight in the optimal portfolio should also have the lowest loss output from the

model’s loss function.

In order to calculate the reward function, the model calculates the profit at each iteration

based on whether the proposed optimal portfolio places a higher weight (buy an additional

share), lower weight (sell an additional share), or same weight (do nothing) on the stock. The

profit is calculated using the Accumulated Asset Value equation:
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In the equation above, “i” represents the action being taken on the stock in question in

terms of adjusting the weight or number of shares acquired (buy, sell, do nothing). “Pricets”

represents the price that the stock in question was sold at. “Pricetb” represents the price that the

stock in question was bought at. “cs” represents the selling cost of the stock and “cb” represents

the purchase price of the stock.

Unlike other deep reinforcement learning in stock trading papers, my reward function

only takes into account information that is available to the average amateur trader such as last

price, selling and purchase cost, and historical averages. Other factors such as short selling and

brokerage fees were taken out of the model since only investment firms deal with these factors

(S. V. Stoyanov, et al 2007). Furthermore, while not described in this model, the statistical

measure of various technical indicators -- including simple moving average, average true range,

average directional index, stochastic oscillators, relative strength index (Panigrahi, 2022),
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moving average convergence divergence, bollinger bands (Fang et al., 2017), and rate of change

-- were used in the training model. For further discussion about the technical indicators, please

visit the References section.

My reinforcement learning model minimizes the error estimated using this loss function

by optimizing the weights of the portfolio, θ, using the difference between the predicted profit

and actual profit based on historical data.

𝐿(θ) =  (𝑇𝑎𝑟𝑔𝑒𝑡𝑄𝑉𝑎𝑙𝑢𝑒)
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In the equation above, “TargetQValue” represents the predicted profit when the model

takes a certain action on the stock in question (buying an additional share, selling an additional

share, doing nothing to the quantity of shares in the portfolio). “r” represents the reward or

expected return of the specified action on the stock in question. “γ” represents the discount

factor, namely the amount that the expected return declines due to delay in action over time. “ ”

represents the action that is being taken on the particular stock (buying an additional share,

selling a share, or doing nothing on the stock). “s” represents the current state of the portfolio

given by the current weights of each stock in the portfolio. “θtarget” represents the actual weight

of the stock in question and “θpred” represents the predicted weight of the stock in question. “t”

represents the time in days over which the action is being taken, and “Q” represents the profit

function of the stock based on the action.

By iterating through each stock in the portfolio and adjusting the optimal weighting using

the reward and loss function defined above, my reinforcement learning algorithm moves toward

an improved portfolio in an effort to increase the expected returns while minimizing losses in
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profits. Using this technique, my results demonstrated a near one-to-one mapping between the

highest weighted stocks in both the Reinforcement Learning algorithm and Efficient Frontier,

which implies that Reinforcement Learning is a feasible trading strategy to reach and even

surpass the Efficient Frontier.

For the remainder of this paper, I will be identifying how my methodology in this study

addresses key concerns and flaws of previous research, providing background information

necessary to understand the relevance of my study which will lead to the hypothesis of this

paper. Finally, I will discuss in greater detail the design of the Reinforcement Learning

algorithm, with specific attention to the reward function, followed by a summary of the results

from the study and the implications that the results provide.

Review of Literature

Within the literature on trading algorithms in comparison to the Efficient Frontier curve

(Lwin et al. 2017; Youmbi 2017), I contribute, to my knowledge, the first benchmark of using

Reinforcement Learning as a feasible trading algorithm that produces an optimal portfolio that

reaches the Efficient Frontier curve. In the paper detailing the Value-at-Risk model, the author’s

replace the variance in the Mean-Variance model with “an industry standard risk measure,

conditional Value-at-Risk (VaR)” to better account for market risk exposure as a result of asset

price fluctuation (Lwin et al. 2017). This paper contributed ideas to my methodology, in that as a

further benchmark to test whether Reinforcement Learning was a feasible strategy to reach

Markowitz’s curve, I had planned to identify if my outputted optimal portfolio would conceive a

higher mean and lower variance, but using conditional VaR proves to be a better measure.

This paper is also related to the literature on Reinforcement Learning algorithms (Li

2021) in that while alternative algorithms take into account measures of optimal return,
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Reinforcement Learning algorithms are devised on the basis of hyperparameters (parameters

initialized before the training process). This paper focuses on controlling for every possible

market condition that active traders working on Wall Street are interested in. Compared to the

goals of my study, the paper places too high of a weight on the certain parameters such as the

brokerage cost (𝛿 = 0.001 compared to 𝜌 = 0.1, 𝜆 = 0.01), and a trading window of 100 days

(which is too large considering the volatility of stocks). More than 70% of American traders are

independent passive trader’s who bimonthly push money into stocks on free apps like Fidelity,

with most stock price fluctuations occurring every month. Placing a considerable weight on

brokerage cost as a hyperparameter that is used for training the model is irrelevant and biases the

model for investors that this study caters to. However, besides this potential flaw, the

Reinforcement Learning model the paper presents creates a well-rounded foundation for my own

algorithm.

While Deep Reinforcement Learning has been proposed for passive trading strategies,

most present day experiments have demonstrated slightly flawed demonstrations in weighing

hyperparameters, risk, and creating testing and training data sets (London et al., 2022). Unlike

the other papers, this study discusses a combination of studies related to using deep RL for stock

trading. Some of the most pressing concerns that were highlighted in these papers that I have

accounted for in my methodology include testing only one stock and having a weak reward

function which does not adequately measure risk, and fixing this using Sharpe’s Ratio (Chen,

Gao 2019). Furthermore, the paper points out how using “raw price data contains a lot of noise -

technical analysis features should be used to mitigate that” and having too small of a training

data set would be a problem for teaching the algorithm, which is why I planned to use two years

worth of the most recent data available. However, it is important to note that even though the
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S&P 100 consists of a diverse variety of stocks, due to current market conditions of hiring

freezes, the results may show slightly anomalous results compared to other time intervals.

Background

Reinforcement Learning (RL) has a long history of serving as a tool for optimal decision

making, from autonomous Game Theory simulations in Pacman to sports betting. In fact, there is

extensive research conducted in using RL in creating stock trading algorithms for investment

firms, such as Bloomberg and Goldman Sachs. However, there is a significant research gap in

how reinforcement learning can be used for the everyday amateur trader using applications such

as Fidelity or Robinhood, where brokerage fees and short selling are not applicable, in an attempt

to reach and even surpass an optimal portfolio formulated by the Markowitz Efficient Frontier.

Reinforcement Learning’s wide range of usage is mostly due to its ability to “use

intelligent agents that are trained to take actions in an environment in order to maximize the

cumulative reward or net benefit of taking those sets of actions”(Hammoudeh 2018). For

example, if an agent had the option to flip a fair coin and earn a positive profit no matter the

result, versus earning no profit from not flipping the fair coin at all, the rational agent, as well as

the Reinforcement Learning algorithm, would always choose to flip the coin because they would

be maximizing their reward from such an action. However, if the agent was presented with the

idea that flipping a heads outcome would cause a positive profit, while flipping a tails outcome

would cause a loss, the rational agent would be more hesitant to choose to flip the coin and

would have to take other factors into account, such as expected return.

In order to better advocate for amateur traders who have limited open-source data

available, this paper will focus on how Reinforcement Learning models that take into account

technical indicators, can be used to reach the Markowitz Efficient Frontier. The Markowitz
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Efficient Frontier plays a crucial role as a success metric as it is “the set of optimal portfolios that

offer the highest expected return for a defined level of risk or the lowest risk for a given level of

expected return”(Youmbi 2017). In this study, this model will serve as the theoretical success

metric in determining the feasibility of Reinforcement Learning as a trading algorithm due to its

ability to identify an optimal portfolio. However, it is important to note that the Efficient Frontier

only serves as a theoretical point due to the unrealistic assumptions it makes, such as “assets

follow a normal distribution, investors are rational and avoid risk when possible, that there is not

enough investors to influence market prices, and that investors have unlimited access to

borrowing and lending money at the risk-free interest rate”(Youmbi 2017). Therefore, I believe

that the Reinforcement Learning model will surpass the expected returns of the Efficient Frontier

Curve.

Hypothesis

The Markowitz Efficient Frontier theory predicts the form of the optimal portfolio of an

investor, namely the highest expected return for a defined risk. Therefore, I will be studying the

feasibility of a better portfolio in terms of mean return and volatility through the use of

Reinforcement Learning (RL) techniques. RL algorithms that take into account technical

indicators – including simple moving average, average true range, average directional index,

stochastic oscillators, relative strength index, moving average convergence divergence, bollinger

bands, and rate of change – can serve as a feasible passive trading strategy that reaches the

Markowitz Efficient Frontier. In my study, the Efficient Frontier will serve as the theoretical

success metric because past research into various other algorithms, including the Mean-Variance

algorithm, prove to create sub-optimal portfolios to the Efficient Frontier.
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Methodology

To test my hypothesis, I built a Reinforcement Learning forecasting tool to predict stock

price movement using the technical indicators mentioned in my hypothesis. Specifically, I

utilized web scraping to obtain the various company stock data during the past two years from

October 29, 2020 to November 18, 2022 and inputted the Last Price, Highest Price, Lowest

Price, and Volatility data columns into my model. My model outputs the reward and loss

functions over time of each of the 101 stocks. With these predictions available to me, I selected

the stock with the highest probability of return. With my stocks selected, I utilized the investment

platform Think or Swim to input my stocks and output plots that show predicted movement over

the span of a week. In order to test my hypothesis, I derived a script that simulates the Efficient

Frontier theory using a Kaggle Notebook. Since this script is less than a year old and allows for

inputting as large a portfolio as desired, I inputted the original company stock dataset into the

Efficient Frontier notebook to see if the stocks that lie on the curve are the same stocks that the

Reinforcement Learning algorithm identifies. The most optimized portfolio lies on the frontier

curve, when mapping volatility over rate of return. This curve serves as the metric for success

because any rates of return above the curve are theoretically impossible so if the stocks chosen

from the Reinforcement Learning algorithm lie on this curve, we know that the portfolio is the

best theoretical portfolio possible. However, it is important to note that the Efficient Frontier

does make a few unrealistic assumptions as described above. Since these assumptions do not

always translate to the real world, I used the Efficient Frontier curve as a theoretical success

metric, but ultimately further investigated if Reinforcement Learning can surpass the returns of

this Efficient Frontier curve due to the theoretical possibility.
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Dataset

This study uses S&P 100 company data ranging over the span of two years (10/29/2020 -

11/18/2022) from Barchart, an open source website and leading provider of real time or delayed

intraday stock and commodities charts and quotes. Since this data updates daily, I use two years

worth of stock data and normalize the data such that every stock starts at a relatively equivalent

starting price (100 dollars), which will make it easier to check to ensure that the basic predicting

functionality of the Reinforcement Learning algorithm is functional. The downloaded data is a

CSV file that includes 101 different observations, namely each company in this index. The fact

that we have one observation per company daily makes it necessary to collect data everyday for

normalization and to ensure a large enough dataset for this study. Each observation (company)

includes the last trade price (Last), the difference between the current price and the previous

day’s settlement price (Change), the associated price change percentage (%Chg), the highest

trade price for the day (High), the lowest trade price for the day (Low), and the total number of

shares or contracts traded that day for the stock (Volume), and date (Time).

Past research has found issues with having a large enough training data set, especially

during time periods that are not representative to general market trends. In the paper about Deep

Learning, the study uses the time period from 2006 to 2018, which inherently contains data

produced during the 2008 financial crisis. This was largely an anomaly for the algorithm to learn

from. This paper will be using S&P 100 data from the website Barchart. The S&P 100 Index is a

“stock market index of United States stocks maintained by Standard & Poor’s. [It is] a subset of

the S&P 500 [which] is designed to measure the performance of large-cap companies and

comprises 100 major blue chip companies across multiple industry groups”(S&P 100 Dow Jones

Indices). Since this data is open-source and contains the fields “volatility” and “rate of return”, it
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will be a much cleaner process to isolate these fields every week and input the cleaned data into

my Reinforcement Learning model and Efficient Frontier for comparison. In order to reach as

well-rounded results as possible, I use historical data from the past two years (2020-2022) as a

comparison. While the current market is experiencing a hiring freeze in the technology industry,

the S&P 100 includes a variety of company stocks in many different industries, making the

market conditions more normalized.

According to the Markowitz Efficient Frontier Theory, the theory maps the optimal

portfolio curve with Volatility vs Expected Return. In order to use this dataset as an input into the

Efficient Frontier algorithm, I only use the “Last” (last trade price) column since I need to

calculate the rate of return and volatility in my algorithm. For rate of return, this would be the dot

product of the last closing price and hypothetical weight for the stock. For volatility, this would

be the square root of the dot product of the weight and dot product of weight with covariance of

the return. An additional calculation that the Theory does is a Sharpe’s ratio calculation which

takes the ratio of the rate of return and volatility. Since it is the purpose of the Efficient Frontier,

the weight for each stock in the optimal portfolio will be determined by these technical

indicators, with the constraints that the summation of the weights need to be equal to one so each

weight for a stock in the portfolio is between [0, 1]. Therefore, the only column needed from the

dataset to create this study’s success metric is the last closing price.

In order to use my dataset in my Reinforcement Learning model to predict the optimal

portfolio, I used slightly more columns than what is needed in the Markowitz Efficient Frontier.

The three main components of a Reinforcement Learning model are the current state, the action,

and the reward function. In regards to the dataset, this would equate to the last closing price of

the stock (current state), the weight of each stock in our optimal portfolio (action), and the
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learning parameters and technical indicators (reward function). This dataset has the last closing

price as a column given and provides vital volatility information such as the percent change in

list price from the previous day to the current day for each stock as well as projected returns.

Furthermore, the dataset includes the volume of trades and contracts made with each stock on a

daily basis, which provides insight on how prices will change as mass selling or buying of stocks

is a key indicator of where the price will be in the future. Using these fields was vital for

designing a reward function that takes into account volatility/risk and expected return.

Design Overview

I. Efficient Frontier Algorithm Design

As mentioned above, I collected data from the last two years from Barchart and extracted

the “Last” (last trade price) column for each company and input this data into the algorithm for

the Efficient Frontier Theory. In order to map out the Efficient Frontier Theory, we must note

that the price of the stocks will have varying movement, so I normalized the price points to

create the same starting point for each stock. Furthermore, the key to portfolio diversification is

combining stocks with low covariance in order to mitigate risk in the portfolio, so covariance

was calculated in this algorithm.

As discussed above, the two input measurements for finding the Efficient Frontier is rate

of return and volatility (Sharpe’s Ratio is an additional technical indicator):

1. 𝐴𝑛𝑛𝑢𝑎𝑙𝑖𝑧𝑒𝑑 𝑅𝑎𝑡𝑒 𝑜𝑓 𝑅𝑒𝑡𝑢𝑟𝑛 =  𝐷𝑎𝑖𝑙𝑦 𝐴𝑣𝑔 𝑅𝑒𝑡𝑢𝑟𝑛 *  252 (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑑𝑖𝑛𝑔 𝑑𝑎𝑦𝑠)

2. 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦 =  𝑑𝑜𝑡 𝑝𝑟𝑜𝑑𝑢𝑐𝑡(𝑤,  𝑑𝑜𝑡 𝑝𝑟𝑜𝑑𝑢𝑐𝑡(𝑤,  𝐶𝑜𝑣(𝐷𝑎𝑖𝑙𝑦 𝐴𝑣𝑔 𝑅𝑒𝑡𝑢𝑟𝑛)))

3. (Evaluates the return of an investment𝑆ℎ𝑎𝑟𝑝𝑒'𝑠 𝑅𝑎𝑡𝑖𝑜 =  𝑅𝑒𝑡𝑢𝑟𝑛/𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦

compared to its risk)
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Once the rate of return, sharpe’s ratio, and volatility were found for each stock, the next

step was creating the optimization that calculates the highest return for the lowest level risk. To

accomplish this, I used the Trust-Region Constrained Algorithm, which assigns initial weights

for each stock assigned “θ0”, which is the first guess at the values of each stock’s weight. In order

to continue moving up the return axis by a fixed point amount, I calculated the volatility as an

update function, which updated the weights that each stock has on the portfolio and outputs the

optimized portfolio.

II. Reinforcement Learning Reward Function Design

The important part of what distinguishes a successful Reinforcement Learning algorithm

is the reward function, the component that many past papers have found flaws within their own

design. As I previously mentioned, Barchart provides all of the current necessary variables

needed to design the reward function for my model, namely the “Last” closing prices, volatility,

“%Chg”, and expected returns. These parameters were used as a functionality test to make sure

that my Reinforcement Learning model was working correctly. Specifically, ensuring that higher

return and lower volatility (risk) stocks are given more weight in general.

The main idea behind a functioning reward function is to give a high reward for when the

algorithm outputs a weight greater than 0.5 to stocks that have a higher expected return and

lower volatility, while outputting a weight greater than 0.5 for the opposite characteristics in a

stock would cause a penalty. Since I have the data to compare and evaluate these characteristics,

the basic premise of my reward function was achievable. However, a potential issue was when

creating more complex rules for the reward function to assign reward or penalty, namely

additional technical indicators. As calculated above, I considered using the Sharpe’s Ratio as a

rule in the reward function to measure risk efficiency, since it is an industry standard. However,
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the Mean-Variance technique that Sharpe’s Ratio relies on proves that the ratio is heavily

influenced by investments that don’t have normal distributions of returns, which we cannot

necessarily guarantee. Furthermore, I considered using the “Volumes” column from the data as

well as historical data to create a predictive measure of how mass selling and buying of stocks

may influence closing prices. However, to create such a measure would require honing in on a

specific time period where certain stocks experienced drastic market changes, which skewed the

overall results, proving to not be beneficial in this study.

Once the optimal portfolio is outputted from my Reinforcement Learning model, I

extracted the expected return and volatility for each stock in the portfolio to create the same

benchmark metric as what the Efficient Frontier curve will show.

Since both my Reinforcement Learning model and Efficient Frontier curve algorithm will

output plots measuring expected return over volatility, both of which are calculated above, I

observed how close the different plots are to each other. More importantly, the success metric

will be defined by comparing which stocks are reported to have the highest weight in both

models and their associated expected returns and volatility. If there is a significant discrepancy

between which stocks have a higher weight in the portfolio, I can infer that Reinforcement

Learning may not be a feasible trading strategy compared to the Markowitz Efficient Frontier.

However, as mentioned above, Mean-Variance can be proven to be a sub-optimal method .

The main focus of this study is to prove that Reinforcement Learning can serve as a

feasible trading strategy to reach the Markowitz Efficient Frontier. Therefore, besides the

interpretation metrics discussed in the above paragraph, I focused on creating a reward function

in my Reinforcement Learning that takes into account only relevant technical indicators for

everyday amateur traders.
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Results

Once the plots of each stock’s total rewards and total losses over time are outputted, I

sorted the stocks by highest returns and lowest loss to determine which stocks have the most

weight in the optimal portfolio. In order to compare my results to the success metric, I ran the

same two years worth of S&P 100 stock data through an Efficient Frontier algorithm to not only

make sure that an optimal portfolio exists, but to identify which stocks are recommended to have

the most weight in an optimal portfolio that has (i) the lowest risk associated and (ii) the lowest

Sharpe’s Ratio risk.

I. Figures and Plots of the Study

In the plots below, Figure 1 identifies the normalized prices of each stock in the S&P 100

dataset which serves as a cleaned starting point for inputting into the Reinforcement Learning

Algorithm and the Efficient Frontier Curve theory. Figure 2 proves that the S&P 100 stocks does

offer an optimal portfolio given the right weight on stock investment, and also provides a basis

for comparison to identify which stocks should be given a higher weight in the optimal

investment portfolio. Figure 3 includes the plots of the stocks that have the highest reward and

lowest losses, which also correspond to stocks with the highest suggested weights from the

Efficient Frontier Curve. Essentially, when inputting the S&P 100 dataset into the Efficient

Frontier Curve, these three stocks were among the suggested highest weights and were identified

by the Reinforcement Learning algorithm as having the highest rewards with lowest losses.
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Figure 1: Normalized Prices of All S&P 100 Stocks

Notes: Since the prices of all 101 stocks are very different, it is difficult to compare without a normalized
starting point for all the stocks, namely at 100 dollars. With normalization, it is easier to see that two of the
stocks, represented by the blue and purple lines, increase much more compared to the others.

Figure 2: Efficient Frontier Curve of Optimal Stock Portfolio in S&P 100

Notes: The figure above demonstrates that given the same dataset inputted into my Reinforcement Learning model,
there exists an optimal portfolio that lies on the Efficient Frontier curve. Later we will see that the highest weighted
stocks in this Efficient optimal portfolio have a close to one-to-one mapping with the highest weighted stocks in the
Reinforcement Learning optimal portfolio.
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Figure 3: Largest Assigned Weights from RL Algorithm that Correspond to the Stocks with Weights
On The Higher End of the Efficient Frontier

Plot A: Loss and Reward Function of Highest Weighted Stock in RL Algorithm and
Markowitz Curve (Johnson & Johnson (JNJ))

Plot B: Loss and Reward Function of Second Highest Weighted Stock in RL Algorithm
and Markowitz Curve (Comcast Corporation (CMCSA))
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Plot C: Loss and Reward Function of Second Highest Weighted Stock in RL Algorithm
and Markowitz Curve (Verizon Communications Inc (VZ))

Notes: The above graphs show the reward and loss functions of the highest weighted stocks in the optimal
Portfolio outputted by the Reinforcement Learning algorithm, namely stocks with the highest expected returns
and lowest risk. The reinforcement learning model shows that the highest expected return portfolio should
have Johnson & Johnson, Comcast Corporation, and Verizon Communications Inc as the stocks with the
highest weight in an optimal portfolio.

II. Interpretation

The perfect Reinforcement Learning algorithm would have shown that the S&P 100

stocks with the highest total reward and lowest total loss also correspond to the suggested highest

weights in the Efficient Frontier Curve optimal portfolio. While there was not a direct

correspondence in results between the algorithm and the success metric, I did find that the stocks

that were suggested to have the highest weight in the Efficient Frontier Curve were among the

“top stocks” in my sorted list for my Reinforcement Learning algorithm. Out of 101 stocks, the

“top stocks” list consisted of seven stocks as a cutoff measurement due to the significant gap in

highest reward to lowest loss between the seventh and eighth stock in the sorted list.

In terms of accuracy and success of this study in proving that Reinforcement Learning

can be a feasible trading strategy that reaches the Markowitz Efficient Frontier Curve, the
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Efficient Frontier Curve outputted the suggested weights of all 101 stocks in an optimal

portfolio, 96 of which were weighted very low at about 0.01. The stocks that had the highest

weight in the Reinforcement Learning optimal portfolio were weighted at 0.11 (JNJ), 0.15

(CMCSA), 0.18 (VZ), and 0.2, three of which correspond to the “top stocks” in the

Reinforcement Learning algorithm. Therefore, due to this high precision result, we can conclude

that Reinforcement Learning can be a feasible trading strategy for this problem. However, we

can also conclude that the Reinforcement Learning algorithm that was used in this study can be

improved for even higher accuracy. As mentioned above, an ideal Reinforcement Learning

algorithm would have the same stocks listed as “top stocks” and have the highest weights in the

Efficient Frontier curve optimal portfolio.

Contextually speaking, the “top stocks”, otherwise known as the stocks that had the

highest expected return and lowest volatility for both the Reinforcement Learning algorithm and

Efficient Frontier do provide connection to real world circumstances. Due to the COVID-19

pandemic, the medical device company Johnson & Johnson was one of the companies tasked

with finding a vaccination to COVID-19. This caused outside investment to the company, as well

as the company’s valuation to increase, which may contribute to why the Reinforcement

Learning algorithm predicted higher returns with this stock. Similar circumstances may have

caused both Verizon and Comcast to increase in valuation, namely that the pandemic induced

many families to become more involved in the internet as a form of communication and

entertainment. However, without an extremely controlled experiment, it is impossible to

conclude these contextual assumptions as to why these three stocks were predicted to provide

high returns.
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Conclusion

Seventy percent of traders in America are everyday passive traders who use applications

like Think or Swim in order to make educated decisions on what stocks they would like to invest

in to increase the return of their portfolios. Most investment platforms use historical data in order

to map trends to give valuable insights to investors. However, as seen in this study, when

compared to the Markowitz Efficient Frontier, Reinforcement Learning provides another layer of

rational decision making that takes into account multiple technical indicators that can further

help investors make educated investment decisions, beyond historical averages. Using

Reinforcement Learning to predict an optimal portfolio outputted stocks (Johnson & Johnson,

Verizon Communications, and Comcast) that current investment platforms such as Think or

Swim and Robinhood do not show as the “best stocks to invest in”, despite the expected returns

surpassing the Efficient Frontier returns. Yet, when checking the validity of these stocks using

technical indicators defined by Asset Pricing Theory -- simple moving average, average true

range, average directional index, stochastic oscillators, relative strength index, moving average

convergence divergence, bollinger bands, and rate of change -- these stocks show empirical

promise in providing higher expected returns. Therefore, Reinforcement Learning as a feasible

trading strategy that reaches and potentially even surpasses the returns of a portfolio produced by

the Efficient Markowitz Curve shows promise as a useful trading strategy to the 70% of

Americans who cannot afford or do not use investment firms.

I. Possible Improvements for Continuation

Since my preliminary results did not yield a one-to-one matching between the

Reinforcement Learning algorithm and the Efficient Frontier theory, I plan to map out the

expected return over volatility of all of the assets to identify if this form of measurement is more
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accurate. I did not use this methodology beforehand because while this would have yielded a

more direct comparison between the Reinforcement Learning algorithm and the success metric,

plotting the total rewards and total losses based on a learning function that already rewards

higher expected returns or profits essentially equates to the same thing. However, since this

current study focuses more on profit over time than the actual expected return, there may be a

third party factor that I am not taking into account which could contribute to the slight

discrepancy in the results.

Furthermore, as another continuation of this study, I will be grabbing data from 2011 and

running the methodology on this new dataset. While it is always best to use the most recent data

available to account for current market conditions, the last two years have proven to be an

anomaly in terms of the financial markets. Therefore, to ensure a more robust conclusion for this

study, I will be taking a more normalized time interval where the financial market was not as

heavily impacted from externalities.

Finally, while this current dataset did not include the relevant information for me to

calculate the Value-at-Risk measure, which has proven to be more accurate for volatility

(Visaltanachoti 2014), I will continue this study by using this measurement in the future in order

to better evaluate the risk of investing in certain stocks in a portfolio.

Continuation Study

In subsequent iterations of this study, I decided to investigate the benchmarking results of

the Reinforcement Learning model compared to the Efficient Frontier by making three main

changes to the preliminary methodology. I created an Out of Sample iteration, revised the risk

measure in both models to use Conditional Value at Risk instead of Volatility, and reran an
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iteration of the study with a Convex Optimizer modification of the Reinforcement Learning

model.

I. Out of Sample Study

To validate the effectiveness of the Reinforcement Learning model, I collected data from

outside of the preliminary study’s date range, namely January, February, and March of 2011, to

conduct an Out of Sample Study. Since my initial dataset had included the pandemic era where

there were abnormal economic booms in the technology sector, while the service industry

suffered, it was important to expand the time horizon of the study with a more representative

dataset of normal economic conditions. The Out of Sample Study demonstrated similar

effectiveness as the preliminary study in that the stocks that were suggested to have a higher

weight in an optimal portfolio between both Reinforcement Learning model and Efficient

Frontier showed a high correlation. Therefore, I can infer that the Reinforcement Learning model

is effective, regardless of time interval.

II. Conditional Value at Risk as a Risk Measurement

In the preliminary iterations of this study, I used S&P 100 company stock data over

October 29, 2020 to November 18, 2022 as a dataset for benchmarking Reinforcement

Learning’s ability to forecast a portfolio that would surpass the expected return of the Efficient

Frontier, given the same dataset. In the previous studies, the main measure for the risk of a stock

was the volatility of the stock. However, risk measurements such as volatility and Value-at-Risk

(VaR) are flawed in that VaR dismisses the lowest percentile of loss (or worst-case loss)

associated with a probability and a time horizon, which does not represent risk accurately. As a

result, I reran the study by revising the Reinforcement Learning model’s risk measurement to use

conditional value at risk. Conditional Value at Risk quantifies the average loss over a specified
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time period of unlikely scenarios beyond the confidence level. In order to calculate the

Conditional Value at Risk, I computed the daily returns of each stock using the Adjusted Close

percent change, and subsequently sorted the returns. Using the “quantile” Python method, I was

able to find the Value at Risks at 90%, 95%, and 99% respectively with the daily returns. In order

to take into account the lowest percentiles of loss, as is the case in the Conditional Value at Risk,

I indexed into where the closing price of each stock was less than the respective Value at Risk for

each percentile and calculated the mean at each quantile.

Implementing the Conditional Value at Risk measure into the Reinforcement Learning

Model required deviating from the typical implementation techniques that past research has

shown due to the less strict constraints that come with amateur versus investment firm trading.

Since the current loss system of the Reinforcement Learning model takes penalties when the

average return of a portfolio goes down due to either selling or buying a share of a company, I

calculated the average CVaR of the whole dataset and assigned a proportional loss penalty

depending on where each company’s individual CVaR stood relative to the average CVaR. This

proved to be a much cleaner solution to seamlessly implementing Conditional Value at Risk

without creating a completely different measurement metric that translated to the model context.

The results from this revision demonstrated that between October 29, 2020 to November

18, 2022, the stocks that the Reinforcement Learning model suggested to have the highest weight

in an optimal portfolio were Altria Group Inc, NVIDIA, Disney, Oracle, and Intel, all of which

were suggested to hold 0.2 weight out of 1. When compared to the Efficient Frontier Model, the

“top stocks” of both models were the same, suggesting that during the specific time interval,

Reinforcement Learning is a competitive model for suggesting an optimal portfolio to Efficient

Frontier, with the risk measurement modification. In order to infer a more robust conclusion, the
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same study was performed on the Out of Sample Dataset (January, February, March 2011) with

the same competitive results.

III. Convex Optimizer

Convex optimization is a recursive game between a learner and opponent where at each

iteration t, the learner first presents a solution that is defined in a set K, otherwise known as the

solution space. The learner subsequently receives a convex function and suffers a loss based on

their solution that they had presented earlier. The goal of the learner is to engineer a sequence of

solutions that minimize the loss.

Since this study focuses on how Reinforcement Learning is a feasible strategy to surpass

the Efficient Frontier, convex optimization was only used to find the ideal model parameters that

minimize the loss function as defined in the Introduction. Acknowledging standard practice, the

loss function was modified to serve as a convex optimization problem with linear constraints,

along with a convex objective function, specifically gradient descent. Gradient descent is a

convex optimization technique used to update the parameters in the direction of the negative

gradient of the objective function. The update is determined by the size of each iteration’s step,

namely the learning rate (Sarykalin, Sergey, et al, 2008).

The convex optimization loss function used in this iteration of the study is defined below.

Li(θi) = E(s, a, r, s’)[(r + γ*maxa’Q(s’, a’, θi-) - Q(s, a; θi))2]

The gradient descent is defined below.

▽θiLi(θi) = Es, a, r, s’[(r + γ*maxa’Q(s’, a’, θi-) - Q(s, a; θi))▽θiQ(s, a; θi)]

Using this loss function that updates itself based on the direction of the negative gradient

in order to reduce loss as efficiently as possible, I reran the same methodology from the
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preliminary study on the 2020 to 2022 dataset, with this revision, and found that the optimal

portfolio only recommended two top stocks since the other 98 companies were given trivial

weights. When running the same iteration with the other time interval datasets presented in this

paper, namely month to month S&P 100 companies in 2011, the revised loss function performed

similarly to the iteration that used Expected Shortfall Risk. However, there was a slight

improvement of 0.68% observed in the convex optimization loss function when comparing

previous expected return to the expected return in this iteration. Therefore, we can infer that the

differences in results can likely be attributed to events that occurred during the time intervals of

the datasets that caused fluctuation in the stock price. While this revised study did incentivize

maximizing expected portfolio return for a given portfolio variance based on historical data, a

more optimal portfolio would have additional diversification beyond two stocks, which implies

that expected return may not be the best objective function to use in a convex optimizer.

Figure 4: Expected portfolio return vs. portfolio variance (2D evaluation of 3D Graph)

Notes: The above graph shows the Expected Portfolio Return vs Portfolio Variance
of the Highest Weight Stocks From the Convex Optimizer, including Stock Allocation.
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IV. Conclusion

When benchmarking which revision to the preliminary Reinforcement Learning study

outputs the most robust, optimal portfolio with the highest expected returns, using Expected

Shortfall Risk instead of a volatility as a risk measure is presented as the best solution. Not only

did the iterations of the study that used this risk measure outperform the Efficient Frontier, but

also the iterations of the study where the loss function was a convex optimizer. Initial research

about the expected shortfall risk and convex optimization hypothesized that the most robust

optimal portfolio finder would be via convex optimization due to the minimized number of steps

required to reach the optimal solution. This is likely due to the time intervals of the datasets used

for this study, as there were significant economic events that occurred during the pandemic

compared to 2011. Furthermore, due to the low diversity portfolio the convex optimizer outputs,

it is possible that the objective function can be improved to attain a stricter goal, due to its

previously relaxed state. However, Expected Shortfall Risk is a better measure for risk when

using Reinforcement Learning to surpass the Efficient Frontier.
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