
Field Examination: Econometrics
Department of Economics

University of California, Berkeley

August 2021

Instructions: Answer THREE of the following four questions.

By submitting your answers to this exam, you acknowledge that, on your honor, you have neither given
nor received any assistance in taking this exam.

1. Consider a partially linear IV model

Y ∗ = Dθ0 + g0(X) + U, E[U | X,Z] = 0 (1)

Z = m0(X) + V, E[V | X] = 0, (2)

where Z is the instrumental variable, D is the endogenous treatment, and Y ∗ is the true outcome. The
observed data vector is

W ∗ = (X,D,Z,∆,∆ · Y ∗),

where
∆ = 1[Y ∗ is observed ].

. We assume that Y ∗ is missing at random given X, and the probability of treatment assignment (i.e., the
propensity score) is

π(X) = Pr(∆ = 1|X)

A. (Warm-up) Suppose Y ∗ is always observed (i.e., π(X) = 1 a.s. ). Write down any valid,
unconditional moment equation for θ0.

B. Write down a moment equation for θ0 when ∆ is partially observed, that is π(X) ≤ 1.

C. In case B., write down an orthogonal moment equation for θ0. Demonstrate the orthogonality
property.

D. Propose a Double ML approach to estimate θ0. Clearly state your assumptions, describe the
method, and provide a formal central limit theorem statement for it.

1



2. Suppose a sample of n =

(
N
2

)
. observations on a scalar dependent variable yij and p-

dimensional vector of regressors xij are related by a linear equation

yij = x′ijβ0 + εij ,

for i = 1, ...N−1 and j = i+1, ..., N, where the slope coeffi cients β0 ∈ Rp are unknown, and the unobservable
error term εij is continuously distributed given xij and satisfies a conditional median restriction

Pr{εij ≤ 0|xij} =
1

2
.

The error term εij is assumed to have (unknown) conditional density function f(ε|xij) that is very well
behaved (i.e., having lots of continuous derivatives, with the level and derivatives of f being uniformly
bounded) and is bounded away from zero for all ε in a neighborhood of zero, and the regressors have all
moments finite.

A. Assuming zij ≡ (yij , x
′
ij)
′ is independently and identically distributed across distinct (i, j) pairs

of observations, describe how β0 might be consistently estimated by an extremum estimator of the form

β̂ ≡ arg min
β∈Rp

Sn(β),

Sn(β) ≡
(
N
2

)−1 N−1∑
i=1

N∑
j=i+1

ρ(zij , β),

for an appropriate choice of criterion function ρ(·), and give additional conditions that ensure consistency
and asymptotic normality of β̂. Derive the expression for the asymptotic distribution of β̂ under your
conditions.

B. Now suppose that zij is not i.i.d., but instead satisfies the "network structure"

xij = x(Ai, Aj) = x(Aj , Ai)

and
εij = Ui + Uj + Vij = u(Ai) + u(Aj) + Vij ,

where Ai is an unobservable "agent specific" random variable that is i.i.d. over i = 1, ..., N and is inde-
pendent of the i.i.d. "pair specific" error term Vij for all i and j. Furthermore, suppose that Ui and Vij are
symmetrically distributed around zero given xi and xj (which implies the conditional median restriction
on εij above), and Vij is independent of Ai and Aj and is continuously distributed with (well-behaved)
density function fV (v) that is bounded above.. (Thus

f(ε|xij) = E[fV (ε− Ui − Uj |xij)],

which is symmetric about zero given xij .)
For the same estimator of β0 you defined above, what changes in the argument for consistency of β̂?

Decomposing
ρ(zij , β) = q(Ai, Aj , β) + [ρ(zij , β)− q(Ai, Aj , β)] ,

where
q(Ai, Aj , β) ≡ E [ρ(zij , β)|Ai, Aj ]

2



show that the second term is uncorrelated across distinct (i, j) pairs and sketch a proof of consistency of
β̂.

C. Assume that an approximate first-order condition for the minimization problem defining β̂ holds:

Ψ̂N (β̂) ≡
(
N
2

)−1 N−1∑
i=1

N∑
j=i+1

ψ(zij , β̂)

= op

(
1√
N

)
,

where, as usual,

ψ(zij , β) =
∂ρ(zij , β)

∂β

for all values of β for which the derivative is well-defined (and is a convex combination of the left- and
right-derivatives otherwise).

Also, using a similar decomposition to part B. above, namely,

ψ(zij , β) = p(Ai, Aj , β) + [ψ(zij , β)− p(Ai, Aj , β)] ,

with
p(Ai, Aj , β) ≡ E [ψ(zij , β)|Ai, Aj ] ,

suppose the following "stochastic equicontinuity" condition holds:∥∥∥[ψ(zij , β̂)− p(Ai, Aj , β̂)
]
− [ψ(zij , β0)− p(Ai, Aj , β0)]

∥∥∥ = op

(
1√
N

)
.

Under these conditions, derive an expression for the asymptotic distribution of β̂.
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3. Consider the classic “Local Average Treatment Effects”(LATE) set-up of Angrist, Imbens and
Rubin (1996, JASA). Let X ∈ {0, 1} be a binary treatment or policy, Z ∈ {0, 1} a binary instrument,
Y ∈ Y the outcome of interest and W ∈W a vector of pre-treatment control variables. Let X (z) denotes a
unit’s potential treatment status when assigned encouragement Z = z. We rule out the existence of defiers
(X (1) < X (0)).

Consider a subpopulation of units homogenous in W = w. Within such a subpopulation the average
effect of the policy X = 1 versus X = 0 on compliers (X (1) > X (0)), those units induced to either take-up
the treatment or not according to whether Z = 1 or Z = 0, can be shown to equal

β (w) =
E [Y |W = w,Z = 1]− E [Y |W = w,Z = 0]

E [X|W = w,Z = 1]− E [X|W = w,Z = 0]
.

A. To recover the unconditional LATE we need to average β (W ) over the distribution of W within
the subpopulation of compliers:

βLATE = E [β (W )|X (1) > X (0)] . (3)

Use Bayes’Rule to show that

βLATE =
E [q1 (W )− q0 (W )]

E [p1 (W )− p0 (W )]

with qz (w) = E [Y |W = w,Z = z] and pz (w) = E [X|W = w,Z = z] for z = 0, 1.
B. Let e (w) = Pr (Z = 1|W = w) be the probability of encouragement given pre-treatment covari-

ates or the propensity score. The effi cient influence function for β
def
≡ βLATE can be show to equal

ψ (R, β, e, h) =
Z

e (W )
(Y − βX)− 1− Z

1− e (W )
(Y − βX)

−
{
q1 (W )− βp1 (W )

e (W )
+
q0 (W )− βp0 (W )

1− e (W )

}
(Z − e (W )) (4)

for R = (W ′, X, Y, Z)′ and h = (q0,q1, p0, p1). Let e∗ 6= e0 be some function of W which is not equal to the
propensity score. Show that

E [ψ (R, β0, e∗, h0)] = 0. (5)

Similarly show that, for h∗ 6= h0
E [ψ (R, β0, e0, h∗)] = 0. (6)

Comment on any implications of (5) and (6) for estimation.
C. Show that

E
[

Z − e (W )

e (W ) [1− e (W )]
(Y − βX)

]
= 0. (7)

D. Let e0 (W ) = e (W ; η0) be a (correct) parametric model of the propensity score. Let η̂ be the
maximum likelihood estimate (MLE) of η0. Consider the estimate which solves

1

N

N∑
i=1

Zi − e (Wi; η̂)

e (Wi; η̂) [1− e (Wi; η̂)]

(
Yi − β̂Xi

)
= 0.

Is this estimate effi cient? Why or why not?
E. Show that the analog estimate based upon

E

[(
W

Z−e(W )
e(W )[1−e(W )]

)(
Y −W ′γ − βX

)]
= 0
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also consistently estimates LATE. Further show that E∗ [Y −Xβ|W ] = W ′γ.
F. Provide a condition under which the analog estimate of β in part E. is locally semiparametric

effi cient. Discuss?
G. Can you provide a set of conditions under which the linear instrumental variables fit of Y onto

X and W with Z being the excluded instrument for X provides a consistent estimate of β?
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4. Suppose {yt : 1 ≤ t ≤ T} is an observed time series generated by the model

yt = δt+ ut, ut = ρut−1 + εt, t = 1, . . . , T,

where u0 = 0 and εt ∼ i.i.d. N (0, 1), while ρ ∈ (−1, 1) is a parameter of interest and δ ∈ R is a (possibly)
unknown nuisance parameter.

A. Find the log likelihood function L(ρ, δ) and, for d ∈ R, derive ρ̂(d) = arg maxρ L(ρ, d), the maxi-
mum likelihood estimator of ρ when δ is assumed to equal d.

B. Find the limiting distribution (after appropriate centering and rescaling) of the “oracle”estimator
ρ̂(δ).

C. Give conditions on δ̂ under which ρ̂(δ̂) asymptotically equivalent to ρ̂(δ).

D. Let

δ̂OLS =

∑T
t=1 dtyt∑T
t=1 d

2
t

.

Does δ̂OLS satisfy the condition derived in C.? If not, determine whether ρ̂(δ̂OLS) is asymptotically
equivalent to ρ̂(δ).
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