# Econometrics Field Exam 

Department of Economics, University of California - Berkeley
August 2019

Please choose three questions to answer. Please use a separate blue book for each answered question. Write your name on each blue book. Answer as completely as you are able. Good luck!
[Q1] A dependent variable $y_{i}$ is generated by a linear regression equation

$$
y_{i}=x_{i}^{\prime} \beta_{0}+\varepsilon_{i},
$$

given an observed $p$-dimensional regression vector $x_{i}$, unobserved error term $\varepsilon_{i}$, and unknown coefficient vector $\beta_{0}$. The errors $\varepsilon_{i}$ are assumed to be independent of $x_{i}$ with density function $f(\varepsilon)$ that is assumed to be positive everywhere, uniformly bounded, and smooth (i.e., lots of continuous derivatives), and has zero median, i.e.

$$
\operatorname{Pr}\left\{\varepsilon_{i} \leq 0\right\}=1 / 2
$$

Given a random sample of size $N$ from this model, consider a penalized version of the usual LAD estimator:

$$
\begin{aligned}
\hat{\beta} & =\arg \min _{b \in \mathbb{R}^{\prime}} P_{N}(\beta) \\
& \equiv \arg \min _{b \in \mathbb{R}^{\prime}}\left(\left(\frac{1}{N} \sum_{i=1}^{N}\left|y_{i}-x_{i}^{\prime} b\right|\right)+\frac{1}{2 N}\left(b-\delta_{0}\right)^{\prime} A_{0}\left(b-\delta_{0}\right)\right) \\
& \equiv \arg \min _{b \in \mathbb{R}^{\prime}}\left(S_{N}(b)+\frac{1}{2 N}\left(b-\delta_{0}\right)^{\prime} A_{0}\left(b-\delta_{0}\right)\right),
\end{aligned}
$$

where $S_{N}(b)$ is the usual LAD criterion function and $\delta_{0}$ is a known "prior guess" of the unknown $\beta_{0}$ and $A_{0}$ is a known, positive-definite weight matrix.
(a) Under what additional conditions (if any) will $\hat{\beta}$ be consistent for $\beta_{0}$ ?
(b) Assume that the usual "approximate first-order condition"

$$
\sqrt{N} \frac{\partial^{-} P_{N}(\hat{\beta})}{\partial b}=o_{p}(1)
$$

where $\partial^{-} P_{N}(b) / \partial b$ is the subgradient of $P_{N}(b)$. Also assume the following "approximate mean-value expansion" holds:

$$
\sqrt{N} \frac{\partial^{-} S_{N}(\hat{\beta})}{\partial b}=\sqrt{N} \frac{\partial^{-} S_{N}\left(\beta_{0}\right)}{\partial b}+H_{0} \sqrt{N}\left(\hat{\beta}-\beta_{0}\right)+o_{p}(1)
$$

where $H_{0}$ is the appropriate "Hessian" matrix for LAD regression, assumed invertible. Under these additional restrictions, derive the form of the asymptotic distribution of $\hat{\beta}$, assuming
it is consistent for $\beta_{0}$. You need not check regularity conditions, but please make your expressions as explicit as possible (including the correct expression for $H_{0}$ ).
(c) Now suppose the penalized estimator $\hat{\beta}$ is defined as

$$
\begin{aligned}
\hat{\beta} & =\arg \min _{b \in \mathbb{R}^{\prime}} Q_{N}(\beta) \\
& \equiv \arg \min _{b \in \mathbb{R}^{\prime}}\left(\left(\frac{1}{N} \sum_{i=1}^{N}\left|y_{i}-x_{i}^{\prime} b\right|\right)+\frac{1}{2 \sqrt{N}}\left(b-\delta_{0}\right)^{\prime} A_{0}\left(b-\delta_{0}\right)\right) \\
& \equiv \arg \min _{b \in \mathbb{R}^{\prime}}\left(S_{N}(b)+\frac{1}{2 \sqrt{N}}\left(b-\delta_{0}\right)^{\prime} A_{0}\left(b-\delta_{0}\right)\right),
\end{aligned}
$$

i.e., the original penalty term is multiplied by $\sqrt{N}$. Under what additional conditions (if any) will $\hat{\beta}$ be consistent for $\beta_{0}$ ?
(d) Again assuming that

$$
\sqrt{N} \frac{\partial^{-} Q_{N}(\hat{\beta})}{\partial b}=o_{p}(1)
$$

where $\partial^{-} Q_{N}(b) / \partial b$ is the subgradient of $Q_{N}(b)$, and that

$$
\sqrt{N} \frac{\partial^{-} S_{N}(\hat{\beta})}{\partial b}=\sqrt{N} \frac{\partial^{-} S_{N}\left(\beta_{0}\right)}{\partial b}+H_{0} \sqrt{N}\left(\hat{\beta}-\beta_{0}\right)+o_{p}(1)
$$

derive the form of the asymptotic distribution of $\hat{\beta}$, assuming $\hat{\beta}$ is consistent for $\beta_{0}$.
[Q2] Let $\left\{R_{i}\right\}_{i=1}^{N}$ be a simple random sample of the $1 \times 3$ vector $R_{i}=\left(X_{i}, Y_{i}, Z_{i}\right)$. We assume that

$$
\begin{equation*}
Y_{i}=Z_{i} \beta_{0}+U_{i}, \quad \mathbb{E}\left[U_{i} \mid X_{i}\right]=0 \tag{1}
\end{equation*}
$$

with $Z_{i} \in\{0,1\}$ binary and

$$
\begin{equation*}
\operatorname{Pr}\left(Z_{i}=1 \mid X_{i}=x\right)=\Phi\left(x \gamma_{0}\right) \tag{2}
\end{equation*}
$$

with $\Phi(\cdot)$ the cumulative distribution function of a standard normal. You may assume that other "standard" regularity conditions hold as well.

Consider the following two-step estimation procedure. First, apply maximum likelihood to the probit model (2), obtain $\hat{\gamma}$ and construct $\hat{Z}_{i} \stackrel{\text { def }}{\equiv} \Phi\left(X_{i} \hat{\gamma}\right)$ for $i=1, \ldots, N$. Second, compute the least squares fit of $Y_{i}$ onto $\hat{Z}_{i}$ :

$$
\begin{equation*}
\hat{\beta}_{T S}=\frac{\sum_{i=1}^{N} Y_{i} \hat{Z}_{i}}{\sum_{i=1}^{N} \hat{Z}_{i}^{2}} \tag{3}
\end{equation*}
$$

This procedure is analogous two-stage least squares, with the first stage based upon the probit instead of the linear probability model.
(a) Construct a moment function

$$
\psi(R, \gamma, \beta)=\left[\begin{array}{c}
\psi_{1}(R, \gamma) \\
\psi_{2}(R, \gamma, \beta)
\end{array}\right]
$$

such that the corresponding method-of-moments estimate of $\left(\gamma_{0}, \beta_{0}\right)$, i.e., the solution to

$$
\sum_{i=1}^{N} \psi\left(R_{i}, \hat{\gamma}, \hat{\beta}_{T S}\right)=0
$$

is identical to that of the two step procedure described above.
(b) Verify that your moment function is valid, in the sense that

$$
\mathbb{E}\left[\psi\left(R, \gamma_{0}, \beta_{0}\right)\right]=0
$$

(c) Consider the alternative, infeasible, one-step estimator $\hat{\beta}_{O S}$ which replaces $\hat{Z}_{i}$ in (3)with the true conditional probability $Z_{0 i} \stackrel{\text { def }}{=} \Phi\left(X_{i} \gamma_{0}\right)$. Compare the asymptotic variances of $\hat{\beta}_{T S}$ and $\hat{\beta}_{O S}$. Provide a characterization of the efficiency loss, if any, associated with having to estimate $\gamma_{0}$.
(d) Now assume that (2) is no longer valid (i.e., that the probit first stage is misspecified such that there is no $\gamma_{0}$ such that (2) holds for all $x \in \mathbb{X}$ ). For example it might be that

$$
\operatorname{Pr}\left(Z_{i}=1 \mid X_{i}=x\right)=\Phi\left(x \gamma_{0}+x^{2} \delta_{0}\right)
$$

Is the two-step estimator consistent under misspecification of the first stage (in general)? Explain.
(e) Consider the two-step instrumental variables estimator with $\psi_{1}(R, \gamma)$ as in part (a) above, but now

$$
\psi_{2}\left(R_{i}, \gamma, \beta\right)=\left(Y_{i}-Z_{i} \beta\right) \Phi\left(X_{i} \gamma\right)
$$

Does consistency of this estimator require both (1) and (2) or just the former or just the latter? Explain.
(f) Consider a second instrumental variables estimator with

$$
\psi_{2}\left(R_{i}, \gamma, \beta\right)=\left(Y_{i}-Z_{i} \beta\right) X_{i}
$$

and $\psi_{1}(R, \gamma)$ as in part (a) above. Assume that $\mathbb{V}\left(U_{i} \mid X_{i}=x\right)=\sigma^{2}$ for all $x \in \mathbb{X}$. Would you (generally) expect that the estimate of $\beta_{0}$ from part (e) to be more precisely, or less precisely, determined than the one based on the above moment function? Explain.
[Q3] Suppose $\left\{y_{t}: 1 \leq t \leq T\right\}$ is an observed strictly stationary time series generated by the (AR(1)) model

$$
y_{t}=\sum_{i=0}^{\infty} \phi^{i} \varepsilon_{t-i},
$$

where $\phi \in(-1,1)$ and $\varepsilon_{t} \sim$ i.i.d. $\mathcal{N}(0,1)$.
As estimators of $\theta=\phi^{2} \in[0,1)$, consider

$$
\begin{gathered}
\hat{\theta}=\hat{\phi}^{2}, \quad \hat{\phi}=\frac{\sum_{t=2}^{T} y_{t-1} y_{t}}{\sum_{t=2}^{T} y_{t-1}^{2}}, \\
\tilde{\theta}=\frac{\sum_{t=3}^{T} y_{t-2} y_{t}}{\sum_{t=3}^{T} y_{t-2}^{2}},
\end{gathered}
$$

and

$$
\check{\theta}=\max (\tilde{\theta}, 0)
$$

It can be shown that, for $k \in\{1,2\}$,

$$
\frac{1}{T} \sum_{t=k+1}^{T} y_{t-k}^{2} \rightarrow_{p} E\left(y_{t-k}^{2}\right)
$$

and

$$
\frac{1}{\sqrt{T}} \sum_{t=k+1}^{T} y_{t-k}\left(y_{t}-\phi^{k} y_{t-k}\right) \rightarrow_{d} \mathcal{N}\left(0, \lim _{T \rightarrow \infty} \operatorname{Var}\left[\frac{1}{\sqrt{T}} \sum_{t=k+1}^{T} y_{t-k}\left(y_{t}-\phi^{k} y_{t-k}\right)\right]\right) .
$$

(a) Find the limiting distribution (after appropriate centering and rescaling) of $\hat{\theta}$.
(b) Find the limiting distribution of $\tilde{\theta}$.
(c) Find the limiting distribution of $\check{\theta}$.
(d) Rank the estimators from (a)-(c) in terms of (asymptotic) efficiency.
[Q4] Suppose $\left\{y_{t}:-1 \leq t \leq T\right\}$ is an observed strictly stationary time series generated by the (AR(1)) model

$$
y_{t}=\varepsilon_{t}+\theta_{0} \varepsilon_{t-1}
$$

where $\theta_{0} \in(-1,1)$ and $\varepsilon_{t} \sim$ i.i.d. $\mathcal{N}(0,1)$.
(a) Let $x_{t}=\left(y_{t}, y_{t-1}, y_{t-2}\right)^{\prime}$ and define the function

$$
h\left(x_{t}, \theta\right)=\left[\begin{array}{c}
y_{t-1} y_{t}-\theta \\
y_{t-2} y_{t}
\end{array}\right] .
$$

Show that $\Theta=\left\{\theta_{0}\right\}$, where $\Theta=\left\{\theta: E\left[h\left(x_{t}, \theta\right)\right]=0\right\}$.
Let

$$
\hat{\theta}_{W}=\arg \min _{\theta} g_{T}(\theta)^{\prime} W g_{T}(\theta), \quad g_{T}(\theta)=\frac{1}{T} \sum_{t=1}^{T} h\left(x_{t}, \theta\right)
$$

where $W$ is a symmetric, positive definite $2 \times 2$ matrix.
It can be shown that

$$
\frac{1}{\sqrt{T}} \sum_{t=1}^{T} h\left(x_{t}, \theta_{0}\right) \rightarrow_{d} \mathcal{N}\left(0, \lim _{T \rightarrow \infty} \operatorname{Var}\left[\frac{1}{\sqrt{T}} \sum_{t=1}^{T} h\left(x_{t}, \theta_{0}\right)\right]\right)
$$

(b) It can be shown that

$$
\sqrt{T}\left(\hat{\theta}_{W}-\theta_{0}\right) \rightarrow_{d} \mathcal{N}\left(0, \omega_{W}^{2}\right)
$$

where $\omega_{W}^{2}$ is some function of $\phi_{0}$ and $W$. Verify this claim and express $\omega_{W}^{2}$ in terms of $\theta_{0}$ and $W$.
(c) Find $W^{*}$, a value of $W$ for which $\omega_{W}^{2}$ is minimal, and express $\omega_{W^{*}}^{2}$ in terms of $\theta_{0}$.
(d) Propose a feasible estimator $\hat{\theta}$ (i.e., an estimator $\hat{\theta}$ that can be computed without knowledge of $\theta_{0}$ ) satisfying

$$
\sqrt{T}\left(\hat{\theta}-\theta_{0}\right) \rightarrow_{d} \mathcal{N}\left(0, \omega_{W^{*}}^{2}\right)
$$

