Field Examination: Econometrics

Department of Economics
University of California, Berkeley

August 2016

Instructions: You have 180 minutes to answer THREE out of the following four questions. Please make your answers elegant, that is, clear, concise, and, above all, correct. Good luck!

1. Suppose $\Theta \subseteq \mathbb{R}^{m}$ is open, $\left(\mathbb{X}, \mathcal{X}, P_{X}\right)$ is a probability space, and $\psi: \mathbb{X} \times \Theta \rightarrow \mathbb{R}^{m}$ is some function. Assume $X_{i} \sim I I D-P_{X}$ for $i=1, \ldots, n$ and suppose $\left(\hat{\theta}_{n}\right)_{n}$ is such that

$$
n^{-1 / 2} \sum_{i=1}^{n} \psi\left(X_{i}, \hat{\theta}_{n}\right)=o_{P_{X}}(1) .
$$

Moreover, suppose
I. There exists a $\theta_{0} \in \Theta$ such that $\lambda\left(\theta_{0}\right)=0$, where $\lambda(\theta) \equiv E[\psi(X, \theta)]$.
II. There exists a $d_{0}>0$ such that $\sup _{\left|\tau-\theta_{0}\right| \leq d_{0}} Z_{n}\left(\tau, \theta_{0}\right)=o_{P_{X}}(1)$, where

$$
Z_{n}(\tau, \theta) \equiv \frac{\left|\sum_{i=1}^{n}\left\{\psi\left(X_{i}, \tau\right)-\psi\left(X_{i}, \theta\right)-\{\lambda(\tau)-\lambda(\theta)\}\right\}\right|}{\sqrt{n}+n|\lambda(\tau)|} .
$$

III. $E\left[\left|\psi\left(X, \theta_{0}\right)\right|^{2}\right]$ is non-zero and finite.
(a) Suppose $P_{X}\left(\left|\hat{\theta}_{n}-\theta_{0}\right| \leq d_{0}\right) \rightarrow 1$. Show that

$$
\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \psi\left(X_{i}, \theta_{0}\right)+\sqrt{n} \lambda\left(\hat{\theta}_{n}\right)=o_{P_{X}}(1)
$$

(b) Suppose $\theta \mapsto \psi(x, \theta)$ is not differentiable, but $\theta \mapsto \lambda(\theta)$ is. Could you still show that $\sqrt{n}\left(\hat{\theta}_{n}-\theta_{0}\right)$ is asymptotically Gaussian? Be precise about the assumptions you need over λ and its derivatives.
(c) Suppose $\psi(x, \theta) \equiv d \log f(x, \theta) / d \theta$, where $f(\cdot, \theta)$ is the pdf (with respect to the Lesbegue measure) indexed by θ. Show that in this case the asymptotic variance coincides with the Fisher information matrix

$$
\int \psi(x, \theta) \psi(x, \theta)^{\prime} f(x, \theta) d x
$$

(d) Suppose the following hold:

1. There exists a $a>0$ such that $|\lambda(\theta)| \geq a\left|\theta-\theta_{0}\right|$ for $\left|\theta-\theta_{0}\right| \leq d_{0}$.
2. There exists a $b>0$ such that $E\left[\sup _{|\tau-\theta| \leq d}|\psi(x, \tau)-\psi(x, \theta)|\right] \leq b d$.
3. There exists a $c>0$ such that $E\left[\sup _{|\tau-\theta| \leq d}|\psi(x, \tau)-\psi(x, \theta)|^{2}\right] \leq c d$ for $\left|\theta-\theta_{0}\right|+d \leq d_{0}$.

Show that these assumptions and assumptions I and II imply assumption III.
[This part is hard. You might be able to show the results with a different set of assumptions; these assumptions are only intended to be sufficient.]
2. [65 points] In each of periods $t=0, \ldots, T$ an agent makes the binary choice $Y_{t} \in\{0,1\}$. The econometrician observes the $T+1$ choice sequence, she does not observe the vector of unobserved agent attributes A. Refer to A as an agent's (unobserved) type. Conditional on A choice follows the stationary first order Markov chain:

$$
\operatorname{Pr}\left(Y_{t}=y \mid Y_{0}^{t-1}, A\right)=\operatorname{Pr}\left(Y_{t}=y \mid Y_{t-1}, A\right),
$$

where $Y_{0}^{t-1}=\left(Y_{t-1}, Y_{t-2}, \ldots, Y_{0}\right)^{\prime}$ is the $t \times 1$ vector of past choices.
(a) [5 POINTS] Let

$$
\begin{aligned}
& \pi_{0}(A)=\operatorname{Pr}\left(Y_{t}=1 \mid Y_{t-1}=0, A\right) \\
& \pi_{1}(A)=\operatorname{Pr}\left(Y_{t}=1 \mid Y_{t-1}=1, A\right)
\end{aligned}
$$

denote the transition probabilities as a function of agent type. Let $p(A)$ denote the steady-state probability of being in state $Y_{t}=1$. Solve for $p(A)$.
(b) [10 Points] Let $Y_{t}=1$ denote employment in period t and $Y_{t}=0$ non-employment. Interpret the estimand

$$
\begin{equation*}
\Lambda\left(y_{0}, s\right)=\mathbb{E}_{A}\left[\operatorname{Pr}\left(Y_{s}=Y_{s-1}=\cdots=Y_{1}=1 \mid Y_{0}=y_{0}, A\right)\right] \tag{1}
\end{equation*}
$$

and explain why, in general, it would not coincide with

$$
\begin{equation*}
\operatorname{Pr}\left(Y_{s}=Y_{s-1}=\cdots=Y_{1}=1 \mid Y_{0}=y_{0}\right) . \tag{2}
\end{equation*}
$$

Present, and interpret, a sufficient condition for (1) and (2) to equal one another. Is this condition plausible when Y_{t} measures employment? [4 to 6 sentences]
(c) [5 Points] Assume that the unobserved attribute vector may take one of K configurations:

$$
A \in \mathbb{A}=\left\{a_{1}, \ldots, a_{K}\right\}
$$

Let $\underline{\rho}=\left(\rho_{1}, \ldots, \rho_{K}\right)^{\prime}$ denote the population frequency of each type of agent. Let

$$
\operatorname{Pr}\left(Y_{0}=1 \mid A=a_{k}\right)=\gamma_{k}
$$

for $a_{k} \in \mathbb{A}$ and $k=1, \ldots, K$ parameterize the initial condition of the process for each type of agent. Similarly let $\pi_{0}\left(a_{k}\right)=\pi_{0, k}$ for $k=1, \ldots, K$ be the probability of choice $Y_{t}=1$ given that $Y_{t-1}=0$ for each type of agent. Define $\pi_{1, k}$ similarly. Note that $\sum_{k=1}^{K} \rho_{k}=1$ for $k=1, \ldots, K$. Explain why $2^{T+1} \geq 4 K-1$ is a necessary condition for identification. [2 to 3 sentences]
(d) [5 Points] Write $\Lambda\left(y_{0}, s\right)$ in terms of the parameters introduced in part (c) above.
(e) [5 points] The econometrician observes choice in periods $t=0, \ldots, T$ for each of $i=1, \ldots, N$ randomly sampled agents. Let $\theta=\left(\underline{\pi}^{\prime}, \underline{\gamma}^{\prime}, \underline{\rho}^{\prime}\right)^{\prime}$ be the full "common" parameter. Assume that A_{i} is observed. Write down the $i^{\text {th }}$ agent's contribution to the complete data likelihood.
(f) [10 points] Write down agent i 's contribution to the integrated likelihood, which marginalizes over the distribution of A_{i}. Say θ was known. What is the posterior probability that agent i is of type k after observing her choice sequence, that is:

$$
\tilde{\rho}_{k i}(\theta)=\operatorname{Pr}\left(A=a_{k} \mid Y_{0}^{T}=y_{0}^{T} ; \theta\right)
$$

HINT: Use Bayes' Law and the $i^{\text {th }}$ agent's contribution to the complete data likelihood.
(g) [15 points] Describe, in detail, how the EM algorithm can be used to maximize the integrated likelihood as a function of θ.
(h) [10 points] Describe a joint fixed effects maximum-likelihood estimator for θ and the vector of incidental parameters $\{A\}_{i=1}^{N}$. Is the resulting estimate of θ consistent as $N \rightarrow \infty$? Will it be consistent under sequences where both N and T grow large? How fast does T need to grow relative to N ? A narrative answer is okay, just try to be clear about the main issues involved, and assumptions needed, for positive or negative answers to the questions. [5 to 15 sentences]
3. Suppose $\left\{y_{t}: 1 \leq t \leq T\right\}$ is an observed time series generated by the model

$$
y_{t}=\delta t+u_{t}, \quad u_{t}=\rho u_{t-1}+\varepsilon_{t}, \quad t=1, \ldots, T,
$$

where $u_{0}=0$ and $\varepsilon_{t} \sim$ i.i.d. $\mathcal{N}(0,1)$, while δ is a parameter of interest and $\rho \in(-1,1]$ is a (possibly) unknown nuisance parameter.
(a) Find the \log likelihood function $\mathcal{L}(\delta, \rho)$ and, for $r \in(-1,1]$, derive $\hat{\delta}(r)=\arg \max _{\delta} \mathcal{L}(\delta, r)$, the maximum likelihood estimator of δ when ρ is assumed to equal r.

Suppose $\rho=1$.
(b) Find the limiting distribution (after appropriate centering and rescaling) of $\hat{\delta}(1)$, the "oracle" estimator of δ.

Suppose also that $\hat{\rho}-1=O_{p}(1 / T)$.
(c) Is $\hat{\delta}(\hat{\rho})$ a consistent estimator of δ ?
(d) Is $\hat{\delta}(\hat{\rho})$ asymptotically equivalent to $\hat{\delta}(1)$?
4. Suppose $\left\{\left(y_{t}, x_{t}\right)^{\prime}: 1 \leq t \leq T\right\}$ is an observed time series generated by the cointegrated system

$$
y_{t}=\theta_{0} x_{t}+u_{t},
$$

where

$$
\binom{u_{t}}{\Delta x_{t}} \sim \text { i.i.d. } \mathcal{N}\left(\binom{0}{0},\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right)
$$

with initial condition $x_{0}=0$.
It can be shown that

$$
\left(\begin{array}{c}
T^{-1 / 2} x_{\lfloor T \cdot\rfloor} \\
T^{-1} \sum_{t=1}^{T} x_{t} u_{t} \\
T^{-2} \sum_{t=1}^{T} x_{t}^{3} u_{t}
\end{array}\right) \rightarrow_{d}\left(\begin{array}{c}
B_{x}(\cdot) \\
\int_{0}^{1} B_{x}(r) d B_{y}(r) \\
\int_{0}^{1} B_{x}(r)^{3} d B_{y}(r)
\end{array}\right),
$$

where B_{x} and B_{y} are independent Wiener processes.
Let $z_{t}=\left(y_{t}, x_{t}\right)^{\prime}$ and define the function

$$
h_{T}\left(z_{t}, \theta\right)=\binom{T^{-1 / 2} x_{t} / \sqrt{T}}{T^{-3 / 2} x_{t}^{3}}\left(y_{t}-\theta x_{t}\right) .
$$

(a) Show that $\Theta_{T}=\left\{\theta_{0}\right\}$, where $\Theta_{T}=\left\{\theta: \sum_{t=1}^{T} E\left[h\left(z_{t}, \theta\right)\right]=0\right\}$.

Let

$$
\hat{\theta}_{W}=\arg \min _{\theta} g_{T}(\theta)^{\prime} W g_{T}(\theta), \quad g_{T}(\theta)=\frac{1}{T} \sum_{t=1}^{T} h_{T}\left(z_{t}, \theta\right)
$$

where W is a symmetric, positive definite 2×2 matrix.
(b) It can be shown that

$$
T\left(\hat{\theta}_{W}-\theta_{0}\right) \rightarrow_{d} \int_{0}^{1} B_{W}(r) d B_{y}(r),
$$

where B_{W} is some functional of B_{x} and W. Verify this claim and express B_{W} in terms of B_{x} and W.
Let $\omega_{W}^{2}=\int_{0}^{1} B_{W}(r)^{2} d r$.
(c) Find W^{*}, a value of W for which ω_{W}^{2} is minimal, and express $\omega_{W^{*}}^{2}$ in terms of B_{x}.
(d) Propose a feasible estimator $\hat{\theta}$ satisfying

$$
T\left(\hat{\theta}-\theta_{0}\right) \rightarrow_{d} \int_{0}^{1} B_{W^{*}}(r) d B_{y}(r) .
$$

