Consider the following two-player dynamic game: Periods are $-T, -(T-1), \ldots, 2, 1, 0$. At each odd period, player 1 can revise her action with (independent) probability p. At each even period, player 2 can revise his action with (independent) probability p. The stage game is

	A_2	B_2
A_1	1, 1	-x, 0
B_1	0, -x	0, 0

where x > 0.

Before time -T, one of the four action profiles is exogenously chosen, where each action profile is assigned probability 1/4. Then, period -T (at which only one player can revise) starts.

Let E(T, p) be the set of subgame-perfect equilibria of this dynamic game. Let $\pi_i(\sigma)$ be player *i*'s average per-period payoff of the dynamic game under strategy profile σ .

- 1. Solve for $\min_{i \in \{1,2\}} \liminf_{T \to \infty} (\inf_{\sigma \in E(T,1)} \pi_i(\sigma))$.
- 2. Characterize the set E(T, 1). You can ignore non-generic cases if you wish.
- 3. For each p, solve for $\min_{i \in \{1,2\}} \liminf_{T \to \infty} (\inf_{\sigma \in E(T,p)} \pi_i(\sigma))$.
- 4. Characterize the set E(T, p). You can ignore non-generic cases if you wish.