Theory Field Examination January 2021

Question A (Economics 207a)

1. Construct a set of priors $C \in \Delta S$ on a state space S such that the utility function $U: [0,1]^S \to \mathbb{R}$ defined by

$$U(f) = \min_{p \in C} \int_{S} f \, dp$$

does not satisfy comonotonic independence (in the sense of Schmeidler). Recall \succeq satisfies comonotonic independence if $f \succeq g$ if and only if $\alpha f + (1-\alpha)h \succeq \alpha g + (1-\alpha)h$, for all $\alpha \in (0,1)$ and f, g, h are pairwise comonotonic (that is, if every pair chosen among the three acts is comonotonic). In this application, f and g are comonotonic if $f(s) \ge f(t) \iff g(s) \ge g(t)$.

2. Let X be a finite set of consequences and S be a finite set of states. Fix some set of priors $C \subset \Delta S$ and an affine (expected-utility) function $v : X \to \mathbb{R}$. Consider the binary relation \succeq on $(\Delta X)^S$ defined by $f \succeq g$ if and only if there exists some $p \in C$ such that

$$\int_{S} v \circ f \, dp \ge \int_{S} v \circ f \, dp.$$

Observe that \succeq is generally intransitive. Prove or provide a counterexample to the following statements:

- (a) \succeq has convex upper contour sets.
- (b) \succeq satisfies independence, in the sense that $f \succeq g$ if and only if $\alpha f + (1 \alpha)h \succeq \alpha g + (1 \alpha)h$.
- 3. Gul and Pesendorfer (2001) say the following defines a **overwhelming temptation** representaton:

$$U(A) = \max_{x \in A} u(x)$$
 subject to $v(x) \ge v(y)$ for all $y \in A$

Suppose \succeq admits an overwhelming temptation representation. Prove or provide a counterexample to the following claim:

- (a) \succeq satisfies Set Betweenness. (That is, $A \succeq B$ implies $A \succeq A \cup B \succeq B$.)
- (b) \succeq satisfies Independence. (That is, $A \succeq B$ if and only if $\alpha A + (1 \alpha)C \succeq \alpha B + (1 \alpha)C$, for all $\alpha \in (0, 1)$ and A, B, C are convex sets of lotteries.)

Problem for Econ 207B

- 1. Consider the following indivisible object assignment model. Let N be a finite set of agents, and X be a finite set of indivisible objects such that $|N| \leq |X|$. Let \mathcal{R} denote the set of linear orders over X. Let \mathcal{A} denote the set of all one-to-one functions $\mu: N \to X$. A mechanism is a function $f: \mathcal{R}^N \to \mathcal{A}$. For all $i \in N$ and $R \in \mathcal{R}^N$, let $f_i(R) = \mu(i)$ if $\mu = f(R)$. For all $R \in \mathcal{R}^N$ and $M \subset N$, let $R_M = (R_i)_{i \in M}$.
 - (a) When |N| = 2, characterize the set of all strategy-proof and Pareto efficient mechanisms.
 - (b) In this part, let |N| be arbitrary. A mechanism f is **group strategy-proof** if for all nonempty $M \subset N$, $R \in \mathcal{R}^N$, and $R'_M \in \mathcal{R}^M$:

$$\left[\forall i \in M : f_i(R'_M, R_{N \setminus M}) R_i f_i(R)\right] \implies \left[\forall i \in M : f_i(R'_M, R_{N \setminus M}) = f_i(R)\right]$$

A mechanism f is **non-bossy** if for all $i \in N$, $R \in \mathbb{R}^N$, and $R'_i \in \mathbb{R}$:

$$f_i(R'_i, R_{N \setminus \{i\}}) = f_i(R) \implies \left[\forall j \in N : f_j(R'_i, R_{N \setminus \{i\}}) = f_j(R) \right]$$

Prove that a mechanism is group strategy-proof if and only if it is non-bossy and strategy-proof.