Theory Field Examination

January 2021

Question A (Economics 207a)

1. Construct a set of priors $C \in \Delta S$ on a state space S such that the utility function $U:[0,1]^{S} \rightarrow \mathbb{R}$ defined by

$$
U(f)=\min _{p \in C} \int_{S} f d p
$$

does not satisfy comonotonic independence (in the sense of Schmeidler). Recall \succsim satisfies comonotonic independence if $f \succsim g$ if and only if $\alpha f+(1-\alpha) h \succsim \alpha g+(1-\alpha) h$, for all $\alpha \in(0,1)$ and f, g, h are pairwise comonotonic (that is, if every pair chosen among the three acts is comonotonic). In this application, f and g are comonotonic if $f(s) \geq f(t) \Longleftrightarrow g(s) \geq g(t)$.
2. Let X be a finite set of consequences and S be a finite set of states. Fix some set of priors $C \subset \Delta S$ and an affine (expected-utility) function $v: X \rightarrow \mathbb{R}$. Consider the binary relation \succsim on $(\Delta X)^{S}$ defined by $f \succsim g$ if and only if there exists some $p \in C$ such that

$$
\int_{S} v \circ f d p \geq \int_{S} v \circ f d p
$$

Observe that \succsim is generally intransitive. Prove or provide a counterexample to the following statements:
(a) \succsim has convex upper contour sets.
(b) \succsim satisfies independence, in the sense that $f \succsim g$ if and only if $\alpha f+(1-\alpha) h \succsim$ $\alpha g+(1-\alpha) h$.
3. Gul and Pesendorfer (2001) say the following defines a overwhelming temptation representaton:

$$
U(A)=\max _{x \in A} u(x) \text { subject to } v(x) \geq v(y) \text { for all } y \in A
$$

Suppose \succsim admits an overwhelming temptation representation. Prove or provide a counterexample to the following claim:
(a) \succsim satisfies Set Betweenness. (That is, $A \succsim B$ implies $A \succsim A \cup B \succsim B$.)
(b) \succsim satisfies Independence. (That is, $A \succsim B$ if and only if $\alpha A+(1-\alpha) C \succsim$ $\alpha B+(1-\alpha) C$, for all $\alpha \in(0,1)$ and A, B, C are convex sets of lotteries.)

Problem for Econ 207B

1. Consider the following indivisible object assignment model. Let N be a finite set of agents, and X be a finite set of indivisible objects such that $|N| \leq|X|$. Let \mathcal{R} denote the set of linear orders over X. Let \mathcal{A} denote the set of all one-to-one functions $\mu: N \rightarrow X$. A mechanism is a function $f: \mathcal{R}^{N} \rightarrow \mathcal{A}$. For all $i \in N$ and $R \in \mathcal{R}^{N}$, let $f_{i}(R)=\mu(i)$ if $\mu=f(R)$. For all $R \in \mathcal{R}^{N}$ and $M \subset N$, let $R_{M}=\left(R_{i}\right)_{i \in M}$.
(a) When $|N|=2$, characterize the set of all strategy-proof and Pareto efficient mechanisms.
(b) In this part, let $|N|$ be arbitrary. A mechanism f is group strategy-proof if for all nonempty $M \subset N, R \in \mathcal{R}^{N}$, and $R_{M}^{\prime} \in \mathcal{R}^{M}$:

$$
\left[\forall i \in M: f_{i}\left(R_{M}^{\prime}, R_{N \backslash M}\right) R_{i} f_{i}(R)\right] \Longrightarrow\left[\forall i \in M: f_{i}\left(R_{M}^{\prime}, R_{N \backslash M}\right)=f_{i}(R)\right]
$$

A mechanism f is non-bossy if for all $i \in N, R \in \mathcal{R}^{N}$, and $R_{i}^{\prime} \in \mathcal{R}$:

$$
f_{i}\left(R_{i}^{\prime}, R_{N \backslash\{i\}}\right)=f_{i}(R) \Longrightarrow\left[\forall j \in N: f_{j}\left(R_{i}^{\prime}, R_{N \backslash\{i\}}\right)=f_{j}(R)\right]
$$

Prove that a mechanism is group strategy-proof if and only if it is non-bossy and strategy-proof.

